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Abstract. Recent years have demonstrated the rise of knowledge graphs
as a powerful medium for storing data, showing their utility in academia
and industry alike. This in turn has motivated substantial effort into
modelling knowledge graphs in ways that reveal latent structures con-
tained within them. In this paper, we propose a non-parametric hier-
archical generative model for knowledge graphs that draws inspiration
from probabilistic methods used in topic modelling. Our model discov-
ers the latent probability distributions of a knowledge graph and orga-
nizes its elements in a tree of abstract topics. In doing so, it provides a
hierarchical clustering of knowledge graph subjects as well as member-
ship distributions of predicates and entities to topics. The main draw of
such an approach is that it does not require any a priori assumptions
about the structure of the tree other than its depth. In addition to pre-
senting the generative model, we introduce an efficient Gibbs sampling
scheme which leverages the Multinomial-Dirichlet conjugacy to integrate
out latent variables, making the posterior inference process adaptable to
large datasets. We quantitatively evaluate our model on three common
datasets and show that it is comparable to existing hierarchical cluster-
ing techniques. Furthermore, we present a qualitative assessment of the
induced hierarchy and topics.

Keywords: Knowledge graphs - Hierarchical clustering - Non-parametric
model- Generative model.

1 Introduction

Knowledge bases have received considerable research attention in recent years,
demonstrating their utility in areas ranging from question answering [8,11] to
knowledge generation [29,9,12] to recommender systems [4]. These knowledge
bases are underpinned by graph structures called knowledge graphs which de-
scribe facts as a collection of triples that relate two entities via a predicate.
Advances in artificial intelligence have spurred on the need to find represen-
tations of knowledge graphs which can be easily and accurately reasoned with
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by machines. One aspect of this is the increased research attention devoted to
generative models for knowledge graphs which learn the latent probability dis-
tributions of a graph. These models work by decomposing the knowledge graph
to a set of probability distributions that, when sampled together, generate its
relations. The learning process, therefore, amounts to inferring the posterior
distribution conditioned on the data.

Probabilistic topic models are types of generative models that have received
considerable attention in the field of natural language processing. The aim of
these models is to build abstract word topics from a corpus of documents and
their words. In this sense, topics may be viewed as clusters of words. Most topic
models operate under the intuition that words which co-occur in the same doc-
uments are likely to have similar semantics and therefore belong to the same
topics. Hierarchical topic models extend this principle and organize the induced
topics into a topic hierarchy whereby each ancestor topic represents a conceptu-
ally coarser version of its descendant topics.

In this paper, we present a model for generating a topic hierarchy from knowl-
edge graphs which extends on existing topic models. In our model, topics are
collections of entities and predicates, and are organized hierarchically in the form
of a rooted tree. In generating these topics, our model also implicitly hierarchi-
cally clusters subjects by sampling a corresponding tree path. Furthermore, we
employ a non-parametric prior over the tree, allowing our model to be free of any
a priori assumptions about its structure other than its depth. We present an effi-
cient Gibbs sampling scheme for posterior inference of our model. The approach
leverages the Multinomial-Dirichlet conjugacy to integrate out parameters for
faster inference. Our evaluation demonstrates our model’s ability to induce a
coherent topic hierarchy as well as hierarchical subject clustering.

2 Related Works

We divide the discussion of related works into two subsections, each of which
our model shares a degree of similarity with: tag hierarchy induction models;
and embeddings and clustering algorithms.

2.1 Tag Hierarchy Induction Methods

In the subsequent section, we introduce the concept of knowledge graph tags
and how they can be leveraged to construct a topic hierarchy. Such a formula-
tion is similar to that used in tag hierarchy induction methods which construct
a hierarchy of tags based on the documents they annotate. One such method,
described by Heymann and Garcia-Molina [16], uses the cosine distance to cal-
culate tag similarity and generality. Tags are then added greedily, starting with
the most general tag, as the child of the tag already in the hierarchy they are
most similar to. Schmitz [30] proposed a method which uses subsumption rules
to identify the relations between parents and children in the hierarchy. These
rules form a directed graph which is then pruned to create a tree. Recently,
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SMICT [25] applied principles from the aforementioned methods to knowledge
graphs to induce a class taxonomy. This approach was extended in [26] to gen-
erate cluster hierarchies of knowledge graph subjects, yielding a result similar
to our model. Frequency-based methods, like the ones mentioned above, often
suffer from a problem where tags that appear more frequently are assumed to
be more general. In an attempt to solve this, [2] introduce domain knowledge
to the algorithm in [5] and verify the directionality of relations by searching for
lexico-syntactic patterns on Wikipedia. This approach improves the quality of
the induced hierarchy when compared to the original model. [15] and [34] both
use a two phase approach in which a tag hierarchy is first induced using a strictly
frequency-based approach and then optimized using domain knowledge in the
form of an existing hierarchy.

2.2 Embeddings and Clustering Algorithms

Knowledge graph embedding methods map knowledge graphs from the discrete
graph space to a continuous vector space. Such a representation is useful as it
allows knowledge graphs to be easily integrated with common machine learning
and deep learning methods. In the context of our work, knowledge graph embed-
dings may be used in conjunction with hierarchical clustering methods, allowing
for a benchmark comparison. Perhaps the most canonical of embedding meth-
ods, TransE [9], applies the intuition that subject embeddings should be near
object embeddings when translated by valid corresponding predicates. Such a
formulation provides an objective function which is then optimized via stochastic
gradient descent to learn the embeddings. In a related approach, RDF2Vec [28]
uses breadth-first graph walks on the skip-gram language model [22] to generate
embeddings. Factorization models such as RESCAL [24] and DistMult [35] learn
embeddings by factorizing the knowledge graph adjacency tensor into the prod-
uct of entity embeddings and relation specific translation matrices. ComplEx
embeddings [33] extend DistMult to the complex domain to better handle asym-
metry in the knowledge graph. ConvE [12] leverages the convolution operator in
a neural framework by stacking embeddings as a martix and convolving them in
two dimensions.

Having mapped a knowledge graph to a continuous space via embeddings,
clustering is trivial since distances between embeddings may be easily calcu-
lated. The process is merely choosing the clustering algorithm best suited for
the data. K-means [20] is perhaps the most common clustering algorithm used
today and works by assigning entities to the cluster with the smallest centre
distance before recalculating cluster centre based on the updated memberships.
Another common approach, OPTICS [3], uses a density based approach which
expands clusters so long as density criteria are being met. Spectral clustering
encompasses a wide range of algorithms which operate on the eigenvalues of the
input entities. To generate hierarchical clusters, agglomerate clustering builds a
hierarchy bottom-up by joining clusters at higher levels in the hierarchy based
on linkage criteria. We use the these clustering methods in conjunction with the
aforementioned knowledge graph embeddings during our evaluation procedure.
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This is similar to ExCut [13] which first generates embeddings before iteratively
refining them using rule mining approaches to generate entity clusters.

3 Proposed Model

In this section, we describe our model by positioning it in the context of exist-
ing probabilistic topic models from which it draws inspiration. Specifically, we
first introduce readers to Latent Dirichlet Allocation (LDA) [7] and Hierarchical
Latent Dirichlet Allocation (hLDA) [6] before formalizing our model.

3.1 Problem Formulation

We define a knowledge graph as a collection of triples, KC, such that each triple
relates a subject entity, s, to an object entity, o, via a predicate, p. Formally,
K = {(s,p,0) € SxP x O} where (s, p,0) is a triple, and S, P, and O are the sets
of subjects, predicates, and objects in IC, respectively. We note that knowledge
graphs are rarely bipartite in terms of S and O. In other words, entities can take
on the role of both subjects and objects in K, thus S N O # (. Our goal is to
find a representation of the knowledge graph in which entities and predicates are
hierarchically organized such that entities representing coarse concepts subsume
their fine grained counterparts. For instance, the concept Person is a coarser
concept than Artist since it encompasses all persons, including artists and non-
artists. A natural representation of this paradigm is a directed tree wherein
coarse concepts occupy nodes closer to the root node. Nodes are then collections
of entities and predicates which share similar semantics. Paths in the tree capture
the progressive granularization of a concept.

3.2 Probabilistic Topic Models

Given a collection of documents and their words, D, topic models generate ab-
stract topics on the intuition that words belonging to the same topic are likely to
occur in the same documents. Latent Dirichlet Allocation (LDA) [7] is a canon-
ical example of the topic models used today. In this approach, each document,
d; € D, is a mixture of topics and each topic is a distribution of words. To
generate a document, the number of document words, W;, the document’s topic
mixture, ;, and each topic’s word distributions, i, are sampled. For each doc-
ument word, w; ;, first a topic indicator z; ; is sampled according to 0; then the
word is generated from z;’s word distribution, 3.,. This generative procedure is
formally defined as follows:

— for each document; d; € D
o W, ~ Poisson(§)
e 0; ~ Dirichlet(«)

— for each topic; k€ 1,2,..., K
e [y ~ Dirichlet(n)
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— for each document; d; € D
e for each word in document; w; ; € d;
% 2; ; ~ Multinomial(6;)
* w; j ~ Multinomial(3., ;)

Learning the distributions which generate the documents amounts to inferring
the posterior distribution. Although this problem is intractable for exact infer-
ence, it can be approximated with algorithms such as Variational Bayes [7] or
Collapsed Gibbs Sampling [14]. We refer readers to the original papers for the
full inference procedure.

LDA has been extended to generate a hierarchy of topics in Hierarchical
Latent Dirichlet Allocation (hLDA) [6]. The foundation of hLDA is the nested
Chinese restaurant process (nCRP) which is an extension of the Chinese restau-
rant process (CRP) [1]. The CRP is a recursively defined stochastic process which
gets its name from the analogy of seating patrons at a Chinese restaurant. In
this restaurant, there are an infinite number of tables and each table can seat
an infinite number of guests. When a guest enters, the probability of him being
seated at a table is proportional to the number of patrons already seated at the
table. Formally, when seating guest g; at a restaurant that has M non-empty
tables, the probability of seating the guest at table m is:

i
A m< M
i+ 1+
P(gi:m|gi717‘”7gl): # m=M-+1
i+ 1+
0 M+1<m

where |n?, | is the number of patrons sitting at table m when guest g; arrives and
7 is a hyperparameter which controls the probability that an incoming guest will
be seated at an empty table.

The nCRP is used in hLDA as an infinitely deep and infinitely branching
prior over a tree structure. In this process, a tree is generated by sampling a
path, ¢;, at each level in the tree via the CRP. Each node in a tree, ny € N,
has its own CRP and being seated at a table is analogous to taking a specific
branch in the path down the tree. As before, the probability of taking a path
is proportional to the amount of times the path has been taken before. When
arriving at a node ny with children My on the (I — 1) level in the tree, the
probability of selecting an existing branch, ¢;[l] € M, or creating a new branch,
cll] = My, is:

Ml e

P(eill] = mles 1.1, eill — 1: 1)) = 4 7+
Y e

\nk|+’y

where ¢;[l] is the node on the path of d; at level I, M} = min(Z* \ M) is the
smallest positive integer not in My, and |nt | is the number of entities that have
gone through node nj when entity i arrived, [nk| = [{j € ZT: j < iAc;[l] = ng}|.
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Putting everything together, hLDA uses the nCRP to generate a tree of
topics. The tree is bounded to a maximum depth of L and each node in the tree
is associated with a topic ;. Each document d; samples a path through L nodes
in the tree, ¢;, and a topic distribution over levels in the tree analogous to the
topic mixture in LDA, 6;. For each word w; ; in d;, a topic z; ; is sampled from 6;
and a word is generated from that topic. The generative process is summarized
as follows:

— for each node in the tree; ny € N
e [3j ~ Dirichlet(n)
— for each document; d; € D
e ¢; ~nCRP(%)
e 0, ~ GEM(p, )
e for each word in document; w; ; € d;
% z; ; ~ Multinomial(6;)

* Wij ~ Beifz )

where GEM(p, ) stands for the stick-breaking process [27] and functions as the
prior for topic levels. As with LDA, we refer the readers to the original papers
for model inference.

3.3 Model Description

We present our model as an extension of hLDA which has been adapted to
knowledge graphs. As such, we adopt the previously introduced concepts and
notation, and focus on highlighting the differences.

The first difference is the departure from the domain of documents and words
to that of subjects, predicates, and objects. We can think of a predicate-object
pair as a tag which describes a subject in a way that is analogous to how a word
describes a document. In this view, a tag, ¢, is defined as (p,0) and belongs to
a subject such that ¢; ; € T; denotes that tag ¢; ; belongs to subject s;. This
formulation is leveraged in our model by assigning a tag topic distribution, 8¢, for
each node in the tree. Furthermore, to capture the distributions of predicates in
each cluster, we mix in a predicate specific topic, SP. Predicates share their level
indicators, z; ;j, with their corresponding tags. As such, the number of predicates
belonging to a subject has to equal its tag count. We define the multiset of
predicates which belong to subject s; as p; ; € P; such that |P;| = |T;|. Thus,
each node is a collection of two topics whose elements span the domain of TUP.

Each subject s; samples a path, ¢;, through the tree using the nCRP as
well as a level distribution, 6;. A further departure from the original hLDA
model is the replacement of the stick-breaking process as the prior of the level
distribution with the Dirichlet distribution. This formulation is a return to the
prior used in LDA and was chosen for two reasons. The first is that the Dirichlet
distribution introduces only one hyperparameter in contrast to the stick-breaking
process’ two. This makes our model easier to apply a priori since hyperparameter
sensitivity and selection present challenges in non-parametric models. The second
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is that the inference scheme is simpler when using the Dirichlet prior. Finally,
the theoretical benefits of the stick-breaking prior are not justified in a practical
context since the infinite distribution would get bounded in our model by the
tree depth, L.

As mentioned previously, level indicators, z; ;, are shared among correspond-
ing predicates and tags. Thus, we sample one level indicator for each tag analo-
gously to hLDA. This indicator is used in conjunction with the subject path to
determine the node whose topics will be sampled from. Unlike hLDA which only
samples words, our model samples predicates and tags from the selected node’s
predicate and tag topic distributions, 8P[c;[z; ;]] and 8[¢;[z; ;]], respectively. We
use the notation 87[¢;[z; ;]] and 8[c;[z; ;]] to denote the predicate and tag topic
distributions of the node at level z; ; on path c;. The generative process is defined
as follows:

— for each node in the tree; ny € N
o [P ~ Dirichlet(n,)
e (3t ~ Dirichlet(n;)
— for each subject; s; € S
e ¢; ~nCRP(7)
e 0; ~ Dirichlet(«)
o for each tag in subject; ¢; ; € T;
% 2; ; ~ Multinomial(6;)
for each predicate in subject; p; ; € P;
% p; ; ~ Multinomial (5% [¢;2; ;]])
for each tag in subject; ¢; ; € T
* t; j ~ Multinomial(8*[c;[z; ;]])

np and n; are hyperparameters of our model which control the sparsity of the
topics such that lower 77 values result in sparser topics which are more dissimilar
from one another. Furthermore, the ratio between 7, and 7 controls the relative
importance of predicates to tags when calculating the likelihood functions. « is a
hyperparameter of the nCRP and controls the probability of creating a new path
in the tree such that higher v values will generate trees with a higher average
branching factor. Finally, « is the topic level hyperparameter. We provide a
graphical representation of our model using plate notation in Figure 1.

3.4 Inference

Our model is intractable for exact inference, thus we approximate it using col-
lapsed Gibbs sampling for posterior inference. The goal of the sampling scheme
is to generate the subject paths, ¢, and level indicators, z, by inferring the latent
parameters. For faster mixing, we integrate out the topic distributions, P and
Bt, as well as the level distributions, 0, by leveraging the Multinomial-Dirichlet
conjugacy. This reduces our inference scheme to simply sampling paths and lev-
els alternately until the parameters of the model are learned, at which point we
can collect samples to estimate the true posterior.
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Fig. 1. Plate diagram for our model.

Sampling Paths The posterior distribution of ¢;, the path for subject s;, con-
ditioned on all other variables is:

P(cilc—s,2i, P, Tiy v, mp, ne) o< Pleile—i, V)P (Pilei, P_i, 24, mp)
P(Tilci, T, 24, M) (1)

where c_; denotes all paths in the tree excluding the path taken by subject
s;. Likewise, P_; and T_; denote the predicates and tags on the tree leaving
out those belonging to to subject s;. This expression is merely an application
of Bayes’ theorem which states the posterior is proportional to the likelihood
times the prior. The first term, P(¢;|c—;, ), is the nCRP prior and is calculated
as outlined earlier in the paper. The second term, IP(P;|c;, P_;,2;,7;), is the
predicate likelihood given the choice of paths. In other words, it is the probability
of observing the predicate data if subject s; were to take path ¢;. The calculation
of this term is defined as follows:

P(P;lc;,P_i,zi,mp) =
ﬁ F(Zmdep_i H#lz_i=l,c_iy=cii, Py =pij] + 77p|P|)
=1 D p, eP., F(#[Z—i =lc i =c,Pi=pi |+ 77p>
L1, ep, F(#[Zi =1l,ciy=ci 1, Py =pi ]+ 77p>

I1

=1 F(Hpiwjepi #lzi =1,cip=ci,Pi =pij| + 77p|P|)

(2)

where I'(.) is the gamma function and #[.] indicates the number of elements
that satisfy the given conditions. Finally, the third term, P(T;|c;, T—;, z;, n:), is
the tag likelihood given the choice of paths and is calculated analogously to the
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predicate likelihood:

P(T;lc;, T—i,zi,m) =
L F(ZtmeT,i H#lz_; =1lcoiy=1ciy, T, =1t ]+ nt|T|)
11;[1 Hti,jeTﬂ. F(#[Z—i =lciy=c ,T_i=t;]+ Tlt)
Lo Il e F(#[Zi =lcip=ciy, Ti =t ] + 77t)
11;[1 F(Zti,jeTi H#lzi =1,ciy =ciy, Ty =t 5]+ T)t|T\)

(3)

The time complexity of sampling a single path, ¢;, is O(|N|(|S| + |T|)), thus
sampling all the paths in one iteration of the Gibbs sampler is O(|S||N|(|S| +

'T))-

Sampling Levels The posterior distribution of z; ;, the level indicator for the
4t tag in subject s; is as follows:

P (i j12i,—j, Pi—jyi—js € Nps M, @) o< P2 512 —j, )P (pi j|Pi -, €, 2i,mp)
P(ti | Ti,—: € 2i,1t) (4)
where z; _; are all the level indicators in subject s; excluding z; ;, the indi-
cator for tag t; ;. The prior for level indicators, P(z; —;|z; —;, ), is obtained
by integrating out the Multinomial distribution via the Multinomial-Dirichlet
conjugacy and calculating the Dirichlet prior as follows:
P(zi12i,—j, ) = E(zizi,—;, @)
= E(E(Zi’j = l)|91, 92, ceey GL, Zi’,j, Oé)
X #[zi—j =]+ (5)
The predicate likelihood, P (p; ;|Pi,—;, ¢i, 2i,1p), is calculated by counting the

total number of predicates at the node specified by z; ; on path ¢; that are the
same as p; j:

P(pi;|Pi—j, iy zi,mp) = E(ps 5|2, ciynp)
X #[Z—(i,) = Zij) Cziy = Cirziyr Piny) = Pigl +1p (6)

The tag likelihood, P (¢, ;|T; —;, c,2;,n:), is calculated analogously:

P(t; ;| T, cinzi, ) = B(pi 5]2i, cisne)
X #[2(ij) = Zijs €y = Cizyr Toigy) = tigl +me (7)

The time complexity of sampling a single topic, z; ;, is O(L) and meaning that
sampling all levels is O(|S||T||L).
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Collapsed Gibbs Sampling As mentioned previously, the collapsed Gibbs
sampling process samples paths and levels alternately, as summarized in Algo-
rithm 1. This approach creates a Markov chain which iteratively approaches its
stationary distribution. As such, it is necessary to burn-in a fixed number of sam-
ples before samples approximating the posterior distribution may be obtained.
Although Gibbs sampling is guaranteed to converge in the infinite case, the speed
with which it does so is highly variable and difficult to predict a priori. Monitor-
ing the likelihood of the model is therefore important in determining whether suf-
ficient training has taken place. Furthermore, due to the non-parametric nature
of our model, the selection of hyperparameters is critically important. Recall,
for instance, that the tree’s structure and size changes every time it is sampled.
Thus, high v values may induce trees with branching factors too high to feasibly
perform inference on.

Algorithm 1 Gibbs Sampling Procedure

Input: Knowledge graph, ; nCRP hyperparmeter, ~; topic hyperparameters, n* and
n'; level hyperparameter o;; Number of iterations, iters

Output: Hierarchical topic model for I defined by ¢ and z

1: Obtain S, P, and T from K
2: for iter = {1,2,...,iters} do
3: forie{1,2,..,]S| do

4: Sample ¢; using Equation 1

5: for j € {1,2,...,|T| do

6: Sample z; ; using Equation 4
T end for

8: end for

9: end for

4 Evaluation

We split the evaluation of our model into two parts: quantitative and qualita-
tive. In our quantitative evaluation, we train our model to obtain a hierarchical
clustering of subject entities. This clustering is then evaluated by comparing
against ground truth labels and calculating metrics of clustering performance.
This gives insight into the quality of induced tree and allocation of subjects to
leaf nodes. To assess the quality of the inferred topic clusters, we perform a
qualitative evaluation by analyzing the membership distributions of predicates
and tags to selected topics. What follows is a summary of our evaluation proce-
dure and discussion of the results. The source code for our model along with the
datasets used may be found on GitHub?3.

3 https://github.com/yujia0223 /hkg
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datasets.
FB15k-237 YAGO3-10 DBpedia
Level 1|Person, Organization, |Person, Organization, |Person, Place
Location, Event Body of Water
Level 2|Artist, Politician, Sci- |Artist, Politician, Sci- |Artist, Athlete, Pop-
entist, Officeholder, entist, Officeholder, ulatedPlace, Natu-
Writer, Musical Or- Writer, Musical Or- ralPlace
ganization, Party, En- |ganization, Party, En-
terprise, Nongovern- |terprise, Nongovern-
mental Organization, |mental Organization,
County, Town, City, Stream, Lake, Ocean,
Mountain, Movie, En- |Bay, Sea
tertainment, Game,
Contest
Level 3|- - Actor, MusicalArtist,
Painter, Soccer-
Player, GridironFoot-
ballPlayer, Winter-
SportPlayer, Swim-
mer, BodyOfWater,
Mountain, Settlement,
Island, Country
Level 4|- - AmericanFoot-
ballPlayer, IceHock-
eyPlayer, Lake, City,
Town

4.1 Datasets

We use three real-world datasets in our evaluation: FB15k-237, YAGO3-10, and
DBpedia. The datasets were chosen based on their ubiquity in existing literature
and to highlight the scalability of our sampling scheme on large datasets. What
follows is a brief description of each dataset.

FB15k-237 The FB15k-237 dataset [32] was constructed from the FB15k data-
set [9] by removing redundant and inverse triples. It contains data queried from
a version of Freebase that existed around 2013. Specifically, it is comprised of
272115 triples, 14541 entities, and 237 predicates. For our hierarchical clustering
analysis, we followed a similar approach to generating a ground truth subset of
the data as [18]. Namely, we first mapped entities to the WordNet taxonomy [23]
through the sameAs predicate, which relates Freebase entities to YAGO entities.
We then extracted triples containing subjects with labels on second level in the
taxonomy from the sets provided in Table 1. This process yielded a dataset with
5301 subjects, 103550 triples, 10018 entities, and 190 predicates.
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Table 2. Method results (mean =+ standard deviation) on the FB15k-237, YAGO3-10,
and DBpedia datasets. Underscore denotes significance at alpha value of 0.05 compared
against our model as per t-test.

FB15k-237 YAGO3-10 DBpedia
Method ARI NMI ARI NMI ARI NMI
RDF2VEC
K-means |.308 4+ .012|.567 + .007|.070 + .019 |.199 4 .017 | .223 -+ .005 | .416 + .005
OPTICS |.087 + .000 |.283 + .000 | .009 + .000 |.172 =+ .000 | .001 =+ .000 |.311 =+ .000
Agglom. |.455 4 .000|.601 + .000 |.038 = .000 |.174 4 .000 | .236 %+ .000 | .414 =+ .000
Spectral |.539 +.000|.678 4 .000|.071 £ .000 |.218 4 .000 |.218 + .000 | .410 4 .000

TransE
K-means |.405 4 .049(.632 + .009 |.263 4 .009 |.367 + .003 | .247 4 .029 | .389 + .024
OPTICS |.031 +.000|.253 4+ .000 |.049 4 .000 |.150 = .000 | .001 + .000 |.198 + .000
Agglom. |.491 4+ .000].599 + .000 |.226 = .000 |.337 4 .000 | .198 + .000 | .383 + .000
Spectral |.658 +.000|.684 4 .000 |.270 = .000|.345 =+ .000 | .057 + .000 |.321 4 .000

DistMult
K-means |.269 4+ .011(.559 + .013|.174 & .012|.326 + .015 | .400 £ .008 | .587 + .010
OPTICS |.016 + .000|.189 + .000 |.029 + .000 |.175 =+ .000 | .002 =+ .000 | .184 + .000
Agglom. |.379 4 .000|.621 + .000 |.202 4 .000 |.882 + .000]|.389 =% .000 | .594 + .000
Spectral |.505 + .000 | .600 4 .000 |.035 = .000 |.124 4 .000 | .150 =+ .000 | .478 4 .000

ComplEx
K-means |.271 4+ .020](.562 +.016.137 + .012|.342 4+ .009 | .462 + .013|.630 + .015
OPTICS |.019 + .000|.202 + .000 |.017 + .000 |.152 =+ .000 | .002 =+ .000 | .235 =+ .000
Agglom. |.385 4 .000|.630 «+ .000 |.181 = .000 |.299 4 .000 | .442 % .000 | .628 =+ .000
Spectral |.563 + .000|.613 4 .000|.016 = .000 |.204 4 .000 |.203 =+ .000 | .550 4 .000

ConvE
K-means |.332 4 .031(.619 + .013|.004 & .003 |.004 + .001 |.474 + .019|.612 + .013
OPTICS |.040 + .000|.254 + .000 |.012 =4 .000 | .088 =+ .000 | .002 + .000 | .238 + .000
Agglom. |.384 4+ .000].630 + .000 |.003 = .000 |.005 4 .000 | .458 + .000 | .614 + .000
Spectral |.556 +.000|.703 % .000|.002 4 .000 | .006 = .000 | .439 + .000 |.639 + .000

ExCut .343 4+ .011|.651 & .002 |.130 + .007|.322 + .011 |.380 + .016 | .595 =+ .005

Our Method|.656 + .005 |.669 + .021 |.044 £ .006 | .218 £ .002 | .406 + .042 | .582 £ .022

YAGO3-10 The YAGO3-10 dataset was derived from the YAGO3 database
[21] which is a knowledge graph derived from Wikipedia and follows the hier-
archical class structure of WordNet. As with FB15k-237, we mapped entities to
the WordNet taxonomy before selecting the subset defined by classes in Table 1.
This resulted in a dataset with 11954 subject, 84382 triples, 27572 entities, and
28 relations.

DBpedia The DBpedia dataset was generated by querying DBpedia [19] for
random entities belonging to classes on levels 4 and 5 as specified in Table 1.
Specifically, 75 entities were extracted for each of these classes. Triples where
these entities take on the subject role were then queried for, filtering out triples
which indicate class membership. This process resulted in 908 subjects, 57191
triples, 31202 entities, and 345 predicates. The impetus for this dataset was to



Hierarchical Topic Modelling for Knowledge Graphs 13

A (908)
| B (350)
| D (75)
L 1 (75)
K (45) - Mountain : 45
L (4) - Town : 1, City : 2, Swimmer : 1
M (14) - Country : 5, Island : 3, City : 2, Lake : 1,
SoccerPlayer : 2, IceHockeyPlayer :1
N (12) - Island : 4, City : 2, Country : 2, Lake : 1,
Swimmer : 1, SoccerPlayer : 1, IceHockeyPlayer : 1
. _E (90)
L3 00
0 (66) - Swimmer : 50, Actor : 11, MusicalArtist : 2,
Country : 2, Mountain : 1
P (16) - City : 8, Town : 4, Country : 3, Swimmer : 1
Q (8) - Country : 2, City : 1, Swimmer : 1, Painter : 1,
MusicalArtist : 2, AmericanFootballPlayer : 1
| F (101)

G (84)

| C (23)

| u (3

.

Fig. 2. Excerpt of our induced tree on the DBpedia dataset. Numbers in brackets
indicate number of subjects which visited the cluster on its path.

evaluate our model on a hierarchy not rooted in the WordNet taxonomy. The
hierarchical relations between DBpedia classes were obtained from the DBpedia
ontology mapping which may be found on the DBpeida website*. All querying
to generate the dataset and ground truth clusters was performed in November
of 2021.

4.2 Quantitative Evaluation

To quantitatively evaluate our model, we examined the hierarchical clustering of
subjects in our induced topic hierarchy. This type of evaluation jointly assesses
the quality of the tree structure as well as the allocation of paths along it.
Specifically, we ran our model five times on each of the aforementioned datasets
using 100 burn-in samples. We then sampled from our learned distributions to
obtain a topic hierarchy. We evaluated the quality of the clustering using the
Adjusted Rand Index (ARI) [17] and Normalized Mutual Information (NMI)

4 http://mappings.dbpedia.org/server /ontology /classes/
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wikiPageUsesTemplate
language

subject

range

mountainRange

location

locatedInArea

5.10-2 0.1 0.15 0.2 0.25 0.3 0.35

Posterior probability

Fig. 3. Predicates and their posterior distribution for cluster K on the DBpedia tree
as displayed in Figure 2.

[31] as in previous works [18]. We compared our model against embedding based
methods described in the related works section. Pretrained embeddings for these
models were obtained from LibKGE® [10]. The mean and standard deviations of
five runs are summarized in Table 2.

Our results indicate that our model is comparable with embedding based
approaches. Indeed, the performance of all methods is highly variable with no
method clearly outperforming the other. We note our model’s underperformance
on the YAGO3-10 dataset relative to other methods. We hypothesize that this is
due to the high ratio of subjects to triples in this dataset. Such a characteristic
results in a low amount of predicates and tags for each subject compared to
other datasets. This in turn hinders our model’s ability to approximate the true
likelihood when calculating the posterior, resulting in lesser performance. Nev-
ertheless, our model is still significantly better than many of the other methods
as measured by a t-test. We conclude, therefore, that our model is capable of
inducing coherent topic hierarchies on real world knowledge graphs.

4.3 Qualitative Evaluation

Cluster allocation is driven by the interaction of predicates and tags. Specifically,
each cluster has predicate and tag membership distributions. This allows us to
draw interesting observations in that we can describe a cluster by its predicate
and tag distributions. This gives us insight into the composition of a cluster.
Figure 2 provides an excerpt of our induced tree on the DBpedia dataset. On
the other hand in Figure 3, we provide an example of cluster K’s predicate dis-
tribution from the DBpedia dataset. We note that this predicate distribution is
consistent with the subjects whose path ends at this cluster. Namely, the pred-
icates are consistent with these subjects, i.e., mountains. Furthermore, we can
also analyze the distribution of objects to which the predicates are connected to.

® https://github.com/uma-pil /kge
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Nepal
Nicaragua
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Switzerland
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Fig. 4. Objects’ posterior distribution for predicate locatedInArea

We highlight this in Figure 4 which shows the object distribution for the predi-
cate locatedInArea for cluster K. Based on the data that we used, the mountains
in cluster K are most probably located in Italy, Peru, Switzerland, and United
States.

5 Conclusion

In this paper we propose a model for discovering underlying hierarchical struc-
tures in knowledge graphs. For this purpose we adapt a hierarchical topic model
used in natural language processing, namely hLDA, to the domain of knowledge
graphs. Our model extends hLDA by introducing separate predicate and tag
(predicate-object pair) topics, yielding a topic hierarchy consisting of predicate
and tag distributions. Knowledge graph subjects take paths through this hierar-
chy which may be seen as an implicit hierarchical clustering of knowledge graph
subjects. This formulation has the added benefit in that it is non-parametric,
therefore does not require a priori assumptions about the tree structure other
than its depth. To infer our model, we present an efficient Gibbs sampling scheme
which leverages the Multinomial-Dirichlet conjugate to integrate out latent prob-
ability distributions allowing our model to scale to large datasets. We evaluate
our model on three real world datasets and compare against benchmark methods.
Our results demonstrate our model’s ability to induce coherent topic hierarchies
with high quality subject clusterings and explainable topic predicate and tag
memberships.
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