
Stream Reasoning Playground

Patrik Schneider1,2,∗, Daniel Alvarez-Coello3,4, Anh Le-Tuan5, Manh
Nguyen-Duc5, and Danh Le-Phuoc5

1 Vienna University of Technology; Vienna, Austria
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Abstract. Stream Reasoning is a well established field not only in the
Semantic Web, but is also adapted in the knowledge representation and
reasoning and AI community in general. In the Semantic Web area, there
have been valuable efforts in building data generators and benchmarks,
however they are not well suited for evaluating more expressive stream
reasoning approaches, since the focus is on a graph-based data model
and more limited reasoning features, such as query answering. This paper
aims at filling the gap, so the different communities can compare, discuss,
and benchmark the various approaches for stream reasoning based on a
common playground. We will present the stream reasoning playground
that targets streaming reasoning as the first-class modelling and pro-
cessing feature. Our playground includes an easy-to-extend platform for
data stream generation with pluggable data formatters, whereby different
data stream sources, and modelling problems for two interesting appli-
cation scenarios, i.e., intelligent traffic management and vehicle stream
data analytics, are provided. Furthermore, we present a more generic
scenario for time-series data, where a workflow for streaming time-series
data from various datasets is facilitated by using mapping functions. To
illustrate a first application of the playground, we report on the usage
experience of well-known stream reasoner developers in the “model and
solve” Hackathon event of the annual Stream Reasoning workshop.

1 Introduction
Stream Reasoning (SR) is a well established field not only in the Semantic Web,
but also in the AI community in general and focuses on inference, i.e., deducing
or inducing implicit facts over data streams. SR has been actively evolving for
more than a decade now, and there exists a wide range of approaches to reason
over streams [21,9]. Since approaches to stream reasoning can be considerably
diverse, it has become desirable to have an agile and well-defined playground
accompanied by the corresponding scenarios, datasets, and (output) tooling
to compare and test the different approaches by fast cycles of iterative tasks.
Notably, the RDF Stream Processing (RSP) community has developed several
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successful platforms, e.g., TripleWave [22], RSPLab [32], RSP4J [31], and LS-
Bench [18] for benchmarking and comparing different RSP approaches. How-
ever, these platforms usually require a graph-based data model, i.e., RDF [17],
that can be queried by some extension of SPARQL [25], i.e., C-SPARQL [4] or
CQELS [19].

This brings us to the core of the problem, the underlying data model and
query language puts already (desired) restrictions on the scope of usage regard-
ing: (a) the expressive power of an approach, (b) the underlying data model
and syntax that can be consumed, and (c) the reasoning tasks that could be
solved. Hence, RSP-based tools cannot be simply adapted and used for evalu-
ating and benchmarking logic programming- or complex event detection-based
approaches. In this paper, we present the SR Playground that is an initiative
and underlying open-source framework for providing such resources to the SR
community, which should eventually lead to a better understanding of the man-
ifolds of (formal) languages, approaches/pipelines, and reasoners. This imposes
the following requirements and the derived features to the framework:

– (F1) Stream reasoning as a first-class use case, where the prime focus of
the playground is the evaluation of a wide range of stream reasoning ap-
proaches/pipelines, i.e., RSP-, logic programming-, and complex-event-based
approaches (see Sec. 4).

– (F2) Consumer agnosticism, where streams for several consumer modelling
languages and input formats should be generated, whether the consumer is
graph-, rule-, or complex event-based (see Sec. 2).

– (F3) Extensibility, where a simple extension with new stream players and
data sources is desired, whether the data source can be a simulation tool,
web stream, or collections of (preprocessed) datasets (see Sec. 2 / 3).

– (F4) Availability and agility, where the playground should be easy to deploy
and fast to update, in case changes or extensions occur, e.g., a syntax change
in the generated streams (see Sec. 2).

– (F5) Base scenarios, where already challenging scenarios from relevant do-
mains should be given as a starting point (see Sec. 3).

– (F6) Multiple tasks, where for each scenario a range of reasoning tasks is
given as plain text, which should go beyond query answering, and include
the use of a background knowledge base (see Sec. 3).

Alas, the above features cannot be always aligned, since for instance agnos-
ticism makes the process of extensions harder. Taking the above considerations
into account and aiming at a well-balanced framework, we present the SR Play-
ground with the following contributions:

– An easy-to-configure and extendable platform for stream generation capa-
ble of producing streams of different scenarios based on stream players and
pluggable data formatters. The platform is quickly deployable using the play-
ground’s Github repository and a Docker-container-based deployment.

– Two well-defined Intelligent Transport Systems (ITS) scenarios, that consist
of (a) a traffic-simulation-generated vehicle flow, and (b) a driving trace from
the perspective of an ego vehicle’s camera moving in a city.

– A scenario with a workflow that indicates the steps for streaming time-series
data from various datasets that is facilitated by using mapping functions.
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– A case study, including the lessons learned from the first usage of the plat-
form in the Stream Reasoning Hackathon 2021, where different model and
solve tasks were given to participants.

The rest of this paper is organized as follows: Section 2 introduces the SR
playground. Then, in Section 3, we describe two out-of-the-box scenarios that
were built with the playground and suggest a workflow to reuse this work with
a custom scenario. Then, a case study of a hackathon that tested the presented
playground is presented in Section 4. Related work is covered in Section 5. Lastly,
the final remarks are available in Section 6.

2 Platform - Stream Reasoning Playground
In this section, we introduce the Stream Reasoning Playground (SRP), an in-
frastructure to stream out semantically annotated data. The SRP’s design is
based on a client-server architecture that is illustrated in Fig. 1a. The Server is
a publisher that generates and broadcasts data streams, whereas the Client is a
data stream consumer that can be piped to the users’ Stream Reasoning solver.

Fig. 1: (a) Overview of architecture and (b) interaction between the components,
where the data source is a traffic simulation tool.

On the server-side, the Stream Player streams out annotated data streams
based on a data source-specific implementation. For example, in the Scenario
A (Section 3.1), the Stream Player embeds a microscopic traffic simulation tool
[33] and forwards the simulation tool’s states, e.g., vehicle positions and traffic
light states. In its simplest form, the Stream Player reads preprocessed datasets
and forwards their content to the Data Formatter. Since our architecture is
designed to be easily extendable, new scenarios can be added with little effort.
The Data Formatter is embedded inside the Stream Player and allows data from
the data source to be mapped into several output data formats (i.e., Datalog,
RDF, etc.) as the publisher desires. The data streams from the Stream Player
are broadcasted via a Websocket Server to one or more clients. On the server-
side, there is also a REST API Handler that allows users (clients, developers,
or administrators) to operate and manipulate the behavior of the Stream Player
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using a given REST API. For example, via the REST API, users can request
the background knowledge base (KB) used in their reasoning engine, start/stop
streaming, and modify the streaming rate or stream output formats.

On the client-side, users can pipe their reasoner (e.g., a SR solver) to the
Playground via the Consumer API. This is illustrated in the sequence diagram of
Figure 1b, which describes the data flow of the Stream Playground for Scenario
A (Section 3.1), where a user can send control commands to the Server as HTTP
requests via a HTTP client, e.g., a web browser, and receives the data stream
from the Server via a Websocket client. A user can set up, start, and stop the
SR playground via the following commands:

– Initialise a stream player : /init
– Start playing a stream : /start
– Modify the behavior of a stream: /modify
– Stop streaming: /stop
– Get the background knowledge base: /getkb

At initialization a user can select the scenario and dataset using the ?streamtype
and ?streamid arguments, as well as the output format using the ?templatetype
argument. All the possible initialization parameters are defined for a scenario in
the configurations defined in the config.yaml file.

Example 1. HTTP requests to initialize and start of a SUMO traffic stream with
JSON-LD as the output format:

– 〈IP ADDRESS〉:〈PORT〉/init?streamtype=sumo&streamid=streamSumo1
&templatetype=traffic-json

– 〈IP ADDRESS〉:〈PORT〉/start
Feature coverage. Regarding extensibility (F3), we designed the architec-

ture with two layers, where the generic layer is scenario-independent and allows
a unified REST API and Websocket server facing the clients. The scenario-
dependent part is implemented via stream players and the re-use of data for-
matters, where a new Stream Player inherits from an abstract player that defines
the interfacing. Importantly, the Stream Player acts as a Python generator (in-
troduced in PEP 255)1 using the yield keyword to return stream messages.

Consumer agnosticism (F2) requires that different output formats, given by
a modelling language, should be supported regardless of the scenario. We assume
that the data sources provided are either relational (as with DB tables and log
files) or tree-shaped (as with JSON files). Then, the input tuples are transformed
by distinct data formatters, where we support the following types of formatters:

– Template-based formatters are based on template files for stream messages
given in the configuration. A set of variables is predefined and replaced on
execution by the Stream Player, e.g., as shown in Scenario A (Section 3.1).

– With in-line formatters the transformations are hard-coded in the Stream
Player, as shown for instance in Scenario B (Section 3.2).

– Mapping-language-based formatters are based on a standardized mapping
language such as RML [10], which consists of mapping rules made of a logical
source, a subject map and zero or more predicate-object maps.

1https://www.python.org/dev/peps/pep-0255/

https://www.python.org/dev/peps/pep-0255/
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The type of formatter can be chosen according to the complexity of the scenario,
where for simpler scenarios template- or in-line-based and for complex scenarios
mapping-language-based formatters can be used.

Regarding availability (F4), the SRP is published under the Apache 2.0 li-
cense. The source code and all the scenario data can be found in the Github
repository: https://github.com/patrik999/stream-reasoning-challenge. For
a fast deployment, it is dockerized and can be delivered as a Docker container.2

3 Scenarios
In this section, we outline a traffic management, a vehicle signal processing with
object detection, and a custom time-series streaming scenario. The scenarios dif-
fer regarding the most complex reasoning tasks and background KB in Scenario
A, the highest complexity of streams and novelty of the domain in Scenario B,
and the easiness to extend with new sources in Scenario C.

3.1 Scenario A - Traffic management

The first scenario is in the domain of urban traffic management and involves
traffic management for Cooperative Intelligent Transportation Systems (C-ITS).
Traffic is observed from a third-person, top-down perspective, and streams of
vehicle movements and signal phases (states) of traffic lights in a given road
network are generated. In this scenario, we have identified the following (possible)
tasks to be tackled:

1. Gathering traffic statistics, e.g., counting the number of vehicles passing;
2. Event detection, e.g., detecting accidents or traffic jams;
3. Diagnosis, e.g., finding the cause for a traffic jam;
4. Motion planning, e.g., routing the vehicles optimally through the network.

Unexpected events could be triggered, e.g., vehicle breakdowns, which lead to
possible traffic disruptions. The data source in this scenario is a microscopic
traffic simulation framework [33] called Simulation of Urban MObility (SUMO).3

The data streams are generated on the fly by different simulation runs on SUMO,
where the simulation design is taken from the experiments from Eiter et al. [11].

Data Generation. In Figure 2a, we show the provided road networks of the
scenario rendered in SUMO with two intersections that connect three roads (one
horizontal and two vertical). Figure 2b is the graph representation of the road
network of Figure 2a including nodes for intersections, links, sources, and sinks.
As shown in the figure, the street layout has two intersections and tree roads with
two in/outgoing lanes each, different road segments between intersections, and
each intersection with a traffic light controller generating traffic light states based
on a static signal plan. We also provide different traffic scenarios to generate
traffic streams of varying density, where the streamid parameter in the API is
used for the initialization of the density:

– Light traffic with free flow (30 vehicles): &streamid=streamSumo1;
– Medium traffic with free flow (120 vehicles): &streamid=streamSumo2;
– Heavy traffic with traffic jam (180 vehicles): &streamid=streamSumo3.

2https://www.docker.com/
3https://www.eclipse.org/sumo/

https://github.com/patrik999/stream-reasoning-challenge
https://www.docker.com/
https://www.eclipse.org/sumo/
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Fig. 2: (a) SUMO rendering of two intersections and (b) corresponding abstract
flow model, where green/brown edges are the “we” or “ew” traffic orientation.

Background KB. A static background KB adds additional immutable infor-
mation to the data streams. In this scenario, it captures the SUMO graph repre-
sentation, including simple traffic regulations, traffic signal plan constraints, and
a simple vehicle taxonomy. The road network of the SUMO model was rendered
into a graph representation encoded as Datalog facts and RDF triples. It is split
into segments of the same length as shown in Figure 2b, where the type its:node
defines connection points between two edges, and a single edge is represented by
an its:link property, where its subject is the source of the edge and the sink is
given by the its:linkedTo property with the additional information on the traffic
flow direction, i.e., “we” denotes west to east. Traffic regulations currently come
with speed limits (in m/s) that are assigned to an edge using the its:maxSpeed
property. Conflicts between traffic lights, i.e., lanes that are not allowed to be
simultaneously red, are given for each intersection by the its:conflictingTL prop-
erty, which are (hard) constraints regarding a signal plan. We also provide a
simple vehicle taxonomy, which adds sub-types using rdfs:subClassOf axioms,
where vehicles in the streams are relate to leaf types.

Streams. The given data streams are the means for processing and per-
forming the intended evaluation, e.g., a hackathon task. The traffic streams are
directly extracted from the SUMO simulation, where we distinguish between
vehicle and traffic light signal streams. The generation of stream messages in
this scenario is driven by each simulation step, whereby each step results in
a single message for each vehicle and each traffic light signal. Fig. 3 provides
an overview of the model used for the traffic streams, where the background
KB is static and the traffic streams capture moving objects, e.g., the vehicles,
and their values as observations. Two observable properties have slightly differ-
ent annotation patterns for their observations, where the first pattern describes
movement-related attributes, such as speed, heading, and acceleration, and the
second pattern describes position-related attributes, such as the GPS position
or the active lane of the vehicle. Note that the properties its:onLane and the
vehicle model in rdf:type, e.g., carA, refer to facts in the background KB. The
attributes for traffic signal messages are not outlined here, but are simpler and
include the intersection, the traffic light ID, and the signal state (green or red),
as well as the message time as a time-point.

We also provide for each data stream a predefined template that allows to
render the messages to RDF triples (encoded in JSON-LD) or Datalog facts,
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Fig. 3: Representation of the schema used for the streams of scenario A.

where the rendering can be set in the stream initialization by the template types
of traffic-json, resp., traffic-asp. A given set of attributes can be used in
the template to complete it on execution.4 For example in vehicle streams, the
variables $VehicleID$, $Type$, and $Timestamp$ can be used in templates to
add the respective SUMO-generated values.

Example 2. In the following, we give a (simplified) example message rendered
in Datalog: speed(vehicle:20, 20, 1001). vehModel(vehicle:20, carA).,
stating that :vehicle:20 of type carA moves at the speed of 20 at time-point 1001.
The same message rendered as RDF triples is shown below:5

<vehicle:20> a sosa:Platform;

a its:carA;

sosa:madeObservation <obs:20_1001>.

<obs:20_1001> a sosa:Observation;

sosa:hasResult [ its:speed "20"^^xsd:float ];

sosa:resultTime "1001"^^xsd:int.

Example Tasks. We introduce possible example tasks that could be used
for a model and solve hackathon. The tasks increase in difficulty, so the first
tasks could be given as a starting point.

Tasks 1. Collection of network traffic statistics updated frequently:
1. Calculating the number of vehicles (NoV) and average speed of all vehicles

on each edge;
2. Separated by vehicle super-type, calculate the NoV and their average speed;
3. Based on red traffic lights, detect any vehicles that do a red-light violation.

Tasks 2. Detection of legal/illegal behavior and driving patterns of individual
vehicles:

4A full list of attributes is given in https://github.com/patrik999/stream-

reasoning-challenge/blob/master/hackathon-2021/Hackaton_Overview.pdf.
5Additionally to the standard namespaces rdf, rdfs, and xsd, we have sosa:

<http://www.w3.org/ns/sosa/>, vsso: <https://github.com/w3c/vsso#>, semkg:

<http://vision.semkg.org/onto/v0.1/>

https://github.com/patrik999/stream-
reasoning-challenge/blob/master/hackathon-2021/Hackaton_Overview.pdf
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1. Detect the vehicles that perform standard maneuvers: vehicles appear/disappear
in the network, turn left/right, or make a short stop;

2. Detect the vehicles that violate traffic rules: speeding, accident, or u-turn;
3. Detect the vehicles that must stop because of another vehicle’s accident.

3.2 Scenario B - Vehicle signals and surrounding objects

The second scenario introduces the challenge of automotive applications to SR
modelers/developers, which was triggered by industry stakeholders (e.g., BMW,
Bosch, and Siemens) to use SR tools and develope descriptive requirements
via well-formulized/standardized data models (e.g., RDF) and query/reasoning
tools. Different from the previous scenario, which focuses on a complex background-
KB, this scenario will focus on facilitating the access to a large collection of open
stream data sources of the automotive industry, provided along with a DNN pro-
cessing pipeline. We believe that this application domain can foster interesting
applications for SR community in years to come, which also distinguishes the
playground from current RSP counter-parts.

In this light, the second scenario consists of data streams produced from the
perspective of vehicles. For each time step, data representing the driving context
is generated. Although the driving context involves data from several domains
(e.g., traffic, weather, infrastructure, and others [16]), we focus on two specific
stream sources: (1) the stream of the vehicle’s location and movement e.g., speed,
acceleration, etc.; (2) the stream of objects that are detected from the images
captured by the camera attached in front of the vehicle. In this scenario, we find
the following tentative tasks to be solved:
1. Finding relevant behavioral patterns from the driving context, e.g., the flow

of traffic around.
2. Finding possible reasons for particular situations, e.g., what was the reason

for a particular maneuver?
3. Detection of complex events, e.g., dangerous situations on the road.

Data Generation: The second scenario concerns with the object scene flow
for autonomous vehicles. The data used in this scenario is based on a few traces
from the KITTI dataset [13], a well-known dataset that has been extensively used
for benchmark comparisons in tasks related to autonomous driving. The data
consists of images captured from a camera attached to a car, its GPS location,
and its speed and acceleration. The data is semantically annotated with SSN [14]
and VisionKG6 vocabulary [20] and is provided as a Linked Data stream using
the streaming platform described in Section 3.1.

To annotate the location and movement of the car, we follow the schema as
described in Scenario A (see Fig. 3). The result of each IndividualMove observa-
tion includes the speed (m/s), and the acceleration in X axis and Y axis of the
vehicle. The IndividualLocation gives the GPS coordinates of the vehicle.

Figure 4 illustrates the semantic schema of the stream data of detected ob-
jects. To detect the objects from the images captured by the camera, we use an
object detection algorithm (e.g., FRCNN [27] or Yolo [26]) which is annotated
as a procedure (sosa:Procedure). To perform object detection for our data, we

6https://vision.semkg.org/

https://vision.semkg.org/
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Fig. 4: Schema used for the semantic annotation of objects detected from the
video frames of the KITTI dataset

Fig. 5: Example of the semantic annotations of detected objects in RDF.

use Yolo algorithm version 4 [5]. An object detection is a result of an observa-
tion (sosa:Observation) that is made by using Yolov4. The result of the object
detection is 1:1 associated with a frame by the property :observedFrame. A de-
tected object contains a box (Box ) and a label that names the object (e.g., car,
van). X and Y are the coordinator of the center of the box in the image. The
width and height values are the size of the box. Fig. 5 illustrates an example of
how a detected object from a frame is symbolically annotated.5 The box that is
labelled with “van” is described as follows. Line 1 represents that the detected
object 0 belongs to the detection 0. Line 2 links the detected object 0 with the
label “van”, and box 0. The coordination and the size of box 0 are annotated
from lines 4 to 7.

Example Tasks.
– Task 1: Query (detect) other vehicles behavior in the stream of labelled

objects collected by the ego-vehicle. Possible tasks are to detect:
1. Detect all oncoming traffic or all crossing traffic.
2. Detect if one object (vehicle) is stationary or moving.

– Task 2: Driving scene understanding, find the explanations for certain ob-
servations, e.g., stopping because of pedestrians, traffic lights, or other cars.

3.3 Streaming a custom time-series scenario

While the previous subsections provided details about ready-to-use data streams
produced from two distinct scenarios, the platform’s users might be interested in
streaming out a custom scenario. Hence, we present in this subsection a possible
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workflow to stream a custom time-series scenario, together with an example of
using a public dataset.

Workflow: The workflow, illustrated in Figure 6, shows how to reuse our
platform with arbitrary time-series data sources and annotation schemes. Please
note that it aims to show one way of reusing our platform. Alternatively, users
might opt to design and implement their own solutions. We assume that a data
source representing the scenario of interest is available. Such data source could
be either a stored time-series dataset or directly a data stream (e.g., readings
of an actual sensor, simulation of transactions, among others). The workflow
follows the general description of the so-called semantization process [29], and
consists of mainly three steps: (a) dataset preparation, (b) semantic annotation,
and (c) message broadcast.

Fig. 6: Overview of the suggested workflow for streaming a custom scenario from
a dataset or an actual data stream. (a) Datasets must be prepared by the user.
(b) A mapping function does the semantic annotation. (c) Semantic data is
streamed out.

The dataset preparation step only applies when the data source is a stored
dataset. As datasets are highly diverse, they must be prepared by the user. The
idea is to transform the dataset into one data frame, where columns refer to
the values of the properties (aka., features, variables) that will be streamed, and
rows associate a set of values with the corresponding time. The data frame can
then be read as a whole or iterated over its rows. Since values are sometimes
unavailable for all columns at a specified time, null values can be cleaned up for
simplicity. Alternatively, the user can choose to resample the series to impute or
fill in the missing values to have all columns with values at each row.

The semantic annotation step annotates the input values with a schema
defined from a semantic model. It has a mapping function that populates the
schema with the source data values. The mapping itself could be performed
in different ways. In the case of RDF data, we recommended using the RDF
Mapping Language (RML) [10]. There are a few existing implementations of
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RML interpreters. For further reference see, for example, RMLStreamer.7 Alter-
natively, one can also programmatically do the mapping.

Lastly, the message broadcast step takes the resulting semantic data at the
current time and streams it out as a message by yielding it to the stream player.
An example of the workflow is presented next.

An example with the comma2k19 dataset: To demonstrate the sug-
gested workflow, we applied it on the comma2k19 8 dataset [28]. This dataset is
publicly available and consists of multiple commute journeys (aka., routes) that
are split into one-minute segments. Data was collected from two vehicles driven
mainly on a highway in California, United States. It has data properties avail-
able in three groups: Controlled Area Network (CAN) bus, Inertial Measurement
Unit (IMU) and Global Navigation Satellite System (GNSS).

We have implemented9 the proposed workflow with one of the dataset seg-
ments and with two dynamic vehicle properties: Speed and SteeringWheelAngle.
However, if needed, the principle could be replicated with more segments or
properties. Figure 7 shows an excerpt from the time series data before and after
the data preparation step.

Fig. 7: Sample sequences of speed and steering wheel angle before and after the
dataset preparation.

Regarding the semantic annotation, we defined a custom schema and a map-
ping function. The schema, shown in Figure 8, is based on the combination of
the ontologies Sensor, Observation, Sample, and Actuator (SOSA) [15] and the
Vehicle Signal Specification (VSSo) [34].5 It is used as a template for the map-
ping function, implemented with RML rules. An excerpt of the rule that maps
the Speed is shown below:

rr:subjectMap [

rr:template "http://sr-challenge/vehicle/speed/observation/{id}" ;

rr:class sosa:Observation];

rr:predicateObjectMap [

rr:predicate sosa:hasSimpleResult;

rr:objectMap [

rml:reference "Speed" ;

rr:datatype xsd:float ] ] ;

7https://github.com/RMLio/RMLStreamer
8https://github.com/commaai/comma2k19
9https://github.com/patrik999/stream-reasoning-challenge/blob/master/

example-custom-scenario/workflow.ipynb

https://github.com/RMLio/RMLStreamer
https://github.com/commaai/comma2k19
https://github.com/patrik999/stream-reasoning-challenge/blob/master/example-custom-scenario/workflow.ipynb
https://github.com/patrik999/stream-reasoning-challenge/blob/master/example-custom-scenario/workflow.ipynb
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Fig. 8: Schema used in the mapping function. It combines the SOSA and the
Vehicle Signal Specification Ontology.

Consequently, the resulting semantic data is passed as a message that the
player will stream out. For instance, the semantic data (in RDF turtle format)
at a particular time looks like the following:

<http://sr-challenge/vehicle/speed/observation/1> a sosa:Observation;

sosa:hasSimpleResult "27.622222222222224"^^xsd:float;

sosa:observedProperty indv:Speed;

sosa:resultTime "2021-01-02 05:18:41.750"^^xsd:dateTime .

<http://sr-challenge/vehicle/steering/observation/1> a sosa:Observation;

sosa:hasSimpleResult "-0.5"^^xsd:float;

sosa:observedProperty indv:SteeringWheelAngle;

sosa:resultTime "2021-01-02 05:18:41.750"^^xsd:dateTime .

Please refer to the platform’s Github repository for further details, such as the
complete RML mapping rules, the Stream Player implementation, and explana-
tions of the workflow.

4 Case Study and Lessons Learned: SR Hackathon 2021
The stream generation platform, together with the Scenarios A and B, was for
the first time applied in the Stream Reasoning (SR) Hackathon 2021,10 which
was organized as part of the SR Workshop in Milan, Italy.11 This hackathon al-
lowed both onsite/remote participation and was designed as a “model and solve”
challenge, where participants had the freedom to choose their own SR pipelines
and reasoners. The principal milestones were: (1) Hackathon announcements
prior to the competition, including the description of preliminary tasks to let
the participants familiarize with the platform; (2) Introduction of participants,
general overview of the platform, and detailed discussion of the tasks at the be-
ginning of the event; (3) Intermediate short sync discussions between organizers
and participants to clarify problems and fix problems in the stream players and

10http://streamreasoning.org/stream-reasoning-hackathon-2021
11http://streamreasoning.org/events/srw2021

http://streamreasoning.org/stream-reasoning-hackathon-2021
http://streamreasoning.org/events/srw2021
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data formatters; (4) Presentation of solutions by all teams and an online voting
to determine the most interesting solutions at the end.

4.1 Solutions of the participants

In this section, we give a short overview of the participating teams and their
suggested solutions, where the solutions of Oxford University and University of
Calabria collected the most votes.

FAU Erlangen-Nürnberg. The team of FAU used Stream Containers, which
are designed to map RDF streams to a RESTful architecture by the decomposi-
tion and decentralization of stream query evaluation. The decomposition is based
on a stream-to-relation (S2R) operator for creating a snapshot of tuples based on
a window function, and a relation-to-stream (R2S) operator for creating streams
with newly time-stamped instances. Example solution: SELECT ?v ?s

(AVG(?z) AS ?s) WHERE {?v :madeObservation ?y. ?y :hasResult ?x.

?x its:speed ?z } GROUP BY ?v, where the sliding window is managed by the
embedding stream container.

NCSR Demokritos. NCSR’s team applied the solver Wayeb [1] for complex
event forecasting using a streaming extension of symbolic automata. Symbolic
automata extend deterministic finite automata with Boolean algebra that can
be defined over an infinite domain. Complex (event) patterns can be defined as
regular expressions with concatenation as · , and Kleene–star as ∗. Example solu-
tion: R = (speed > 13)·(speed > 13), detecting that the event (speed > 13)

occurs twice on the (vehicle) speed stream.

Oxford University. The team of Oxford suggested a hybrid approach to par-
ticipate at the hackathon. According to the given tasks, a decision module se-
lects between two solvers, namely RDFox [23] and MeTeoR. In RDFox, they
applied standard Datalog rules including aggregation. MeTeoR was appplied,
where metric temporal logic (MTL) operators such as �[0,5] for simulating a
window operator, e.g., of 5 time steps (ts), were needed. Example solution:
avgSpeed[?Z,?T] :- AGGREGATE(onLane[?X, ?Z], speed[?X,?S] ON ?Z

BIND AVG(?S) AS ?T).

University of Calabria. The team of UniCal competed with an approach
that extends static Answer Set Programming (ASP) with streaming features.
The solver is called I-DLV-sr [7] and combines an incremental grounding solver
[6] with streaming data forwarded from Apache Flink. Example solution:
accid(X) :- speed(X,0) always in [25]., where the last part of the rule
states that speed(X,0) has to occur always in a 25 ts window.

TU Wien. The TU Wien team followed the spirit of a hackathon and extended
the static ASP solver Clingo [12] to handle streaming data. This was achieved by
a Python-based stream handler that emulates a window operator and generates
time-dependent facts. Example solution: cNoV(N,X,Y,T) :- link(X,Y),

time(T), N=#count{I:onLane(I,X,Y,T))}, N 6= 0., where cNoV(N,X,Y,T) can
then be chained in a new rule to sum up several time points.

4.2 Lessons Learned

The lessons learned include a user survey at the hackathon based on the intro-
duced features, but also covers our own evaluation of organizational aspects.
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Hackathon survey. We conducted a survey after the hackathon, where six
questions were asked to the participants.12 The quesions related directly to the
platform features with the results shown in parenthesis: Overall suitability (4.2
out of 5 points), suitability for SR (3.4 out of 5 points), extensibility with new
features (4.4 out of 5 points), preferred usability aspects (deployment, API, and
fast error fixing), and difficulty of the“model and solve” tasks (well balanced).
The last question regarding platform improvements is discussed below.

Own evaluation. Using Github and providing an easy-to-follow installation to
replicate the environment via Docker were positive decisions and allowed par-
ticipants to quickly deploy after we made changes. The release of the initial
hackathon’s tasks a few weeks before the competition helped participants get fa-
miliar with the platform and set up their working environments on time, where
the use of the messaging platform Slack was essential for the rapid communi-
cation between (remote) teams and organizers. The increasing difficulty of the
tasks was an appropriate way to keep the engagement of participants. Tasks
that were not fully solved are a clear indicator of possible future work. Giving
the participants the freedom to “model and solve” the solutions resulted (as ex-
pected) in different ways of solving the tasks, which is an excellent way to cope
with the diverse techniques and approaches existent in the SR area.

What could be improved? From the participants perspective, the following
suggestions for improvements were given: (1) For Scenario A, provide a larger
set of streams, (2) give a clearer definition of the tasks and some example so-
lutions, (3) provide all formats for all scenarios including plain JSON, (4) add
benchmarking features for automatated measurements, (5) extend the protocolls
so other communication methods such as Apache Kafka Producer API could be
used. From our perspective, we released the platform/documentation only a few
weeks in advance, hence the timeline was tight to spot, and issues needed to be
fixed on-the-fly. Therefore, the earlier the competition details and tools can be
released, the better.

Based on the evaluation, we conclude that the reuse of the proposed platform
is recommended as it constitutes a strong foundation for the preparation of future
competitions, where the focus could be on the other scenarios presented or on
entirely new scenarios taken from different domains such as robotics.

5 Related Work
There have been many benchmarks and data generators for RDF stream data
processors. The earliest ones are SRBench [35], LSBench [18], and CityBench [2],
which focus on the query features of C-SPARQL and CQELS-QL. SRBench uses
data from three sources, i.e., LinkedSensorData, Geonames and DBpedia to cre-
ate data streams. LSBench provides social network stream data via its simulated
data generator. CityBench provides stream data from a Smart City application
for the city of Aarhus, Denmark. Recently, integrated tools and benchmarks, such
as TripleWave [22] and RSPLab [32] aim to reduce the effort required to design

12The questions and results are provided in https://github.com/patrik999/

stream- reasoning-challenge/blob/master/hackathon-2021/Survey.pdf.

https://github.com/patrik999/stream-
https://github.com/patrik999/stream-
reasoning-challenge/blob/master/hackathon-2021/Survey.pdf
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and execute reproducible experiments as well as share their results. RSPLab in-
tegrates two existing RSP benchmarks (LSBench and CityBench) and two RSP
engines (C-SPARQL engine and CQELS). It provides a programmatic environ-
ment to deploy in the cloud RDF Streams and RSP engines.While LSBench’s and
CityBench proposed two test-drivers that push RDF Stream to the RSP engines
subject of the evaluation, RSP Lab is developed to be benchmark-independent.
The most common processing features of this line of work are based on SPARQL
such as C-SPARQL and CQELS-QL. In some cases, complex event query pat-
terns such as [3] and [8] are also introduced.

There have been some extensions of the above RSP-based data generators
to accommodate reasoning features. However, such extensions only cover some
small set of reasoning features such as RDFS or a fragment of OWL-DL. In SRP,
reasoning is the first-class feature by design which is motivated the emergent
application scenarios around V2X and autonomous driving. Our playground has
been long motived by the developers of stream reasoners participating at the
annual stream reasoning workshops.11 For instances, the ones listed in Section 4
are among the well-known reasoners. Moreover, with the extensibility of the
playground presented above, the mentioned benchmarking systems can be reused
in our players for their systems.

6 Conclusion

This work is sparked by the diversity of approaches in the field of SR, making it
challenging to compare formal languages, approaches/pipelines, and reasoners.
Existing works from the RSP community have constituted a good starting point,
but they are too restrictive regarding the data model and the reasoning tasks
(i.e., RDF and query answering). To overcome these limitations, we presented
the Stream Reasoning Playground (SRP), which is an open source platform and
treats SR as a first-class use case. As indicated by a user survey, it provides a sat-
isfying level of extensibility (F3), consumer agnosticism (F2), availability/agility
(F4), and a base scenarios with reasoning tasks that were considered as “well
balanced” (F5/F6). The SRP comes with an easy-to-configure and extensible
platform to generate streams for different scenarios based on stream players and
pluggable data formatters. Notably, besides two well-defined ready-to-use ITS
scenarios, we have described a workflow for streaming custom time-series data.
The features were evaluated in a case study based on the SR Hackathon 2021,
where we reported on developed solutions, a user survey, and lessons learned.

We consider that the following aspects deserve the attention of the future
development of the SRP: (i) defining and including benchmarking features and
the corresponding metrics to validate and compare the performance of differ-
ent solutions to a standard set of tasks; (ii) extending SRP to support streams
that include probabilities and addition of probabilistic reasoning features to in-
tegrate deep learning models and common-sense reasoning, such as [24,30]; (iii)
organizing a repository for community-contributed scenarios and data sets; and
(iv) improving the semantization step by adding new formatters covering other
languages and a tighter integration of RML.
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