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Abstract. Sequential recommendation can capture dynamic interest
patterns of users based on user interaction sequences. Recently, there
has been interest in integrating the knowledge graph (KG) into sequen-
tial recommendation. Existing works suffer from two main challenges:
a) representing each entity in the KG as a single vector can confound
heterogeneous information about the entity; b) triple-based facts are
modeled independently, lacking the exploration of high-order connec-
tivity between entities. To solve the above challenges, we decouple the
KG into two subgraphs, namely CRoss-user Behavior-based graph and
Intrinsic Attribute-based graph (Crbia), depending on the type of re-
lation between entities. We further propose a CrbiaNet based on the
two subgraphs. First, CrbiaNet obtains behavior-level and attribute-level
semantic features from these two subgraphs independently by different
graph neural networks, respectively. Then, CrbiaNet applies a sequential
model incorporating these semantic features to capture dynamic pref-
erence of the users. Extensive experiments on three real-world datasets
show that our proposed CrbiaNet outperforms previous state-of-the-art
knowledge-enhanced sequential recommendation models by a large margin
consistently.

Keywords: sequential recommendation · knowledge graph · heteroge-
neous information · graph neural network

1 Introduction

The recommendation system aims to suggest related items to users from a massive
collection of items, thereby alleviating the problem of information overload. Se-
quential recommendation has been receiving increasing attention from researchers
in the recommendation field. It is necessary to model dynamic user preference
over time to provide accurate and high-quality recommendations. With the pop-
ularity and effectiveness of deep learning technologies in the fields of computer
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vision and natural language processing, much of the literature on sequential
recommendation has focused specifically on capturing sequential patterns from
the historical interaction sequences sorted by time to predict future items for
users via neural network models, such as GRU4Rec [6], Caser [23], SASRec [9],
and BERT4Rec [22].

Although sequential recommendation has achieved great success in capturing
dynamic user preference, it is limited by the fact that the vector of user preference
is learned independently through each user’s interaction sequence, and a large
portion of the user interaction sequence is sparse [4]. Recently, many previous
studies have focused on injecting the KG into sequential recommendation models
through path-based methods (e.g., MASR [8] and KSRN [43]) and embedding-
based methods (e.g., Chorus [28] and KERL [30]) to solve the aforementioned
problems. The path-based approaches extract meta-paths that are relevant to
user behavior sequences from the KG. However, these approaches rely heavily on
expert knowledge to design reasonable meta-paths, and it is difficult to enumerate
all potentially useful meta-paths [4]. The research in this paper is concerned with
embedding-based approaches, which use the KG embedding methods to acquire
the embedding of each entity in the KG. The existing embedding-based methods
integrated into sequential recommendation models are divided into two categories,
i.e., traditional distance-based models (e.g., TransE [1] and TransR [13]) and
traditional semantic matching models (e.g., DistMult [37] and ComplEx [25]).
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Fig. 1: (a) The heterogeneous information in the KG. (b) The high-order connec-
tivity between items in the KG where the yellow dashed line indicates no directly
connected edges between items.

In the recommendation domain, there are two challenges in applying these
two categories of embedding-based approaches to encode semantic features in
the KG.

– Heterogeneous semantic information of items: the KG in the recommendation
domain includes intrinsic attribute-level semantic information of items and
behavior-level semantic information of items extracted from user logs [14]. A
case is shown in Fig. 1-(a), the bottom two triples (iPhone, brand, Apple) and
(iPhone, category, Phone) construct the attribute-level semantic information
of iPhone, and the top two triples generate the behavior-level semantic infor-
mation of iPhone. Existing embedding-based methods applied to sequential



Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 3

recommendation confound two types of heterogeneous information in a single
vector.

– High-order connectivity between items: the embedding-based approaches
mentioned above only model each fact consisting of a triplet individually,
and ignore the high-order connectivity between items [29]. The high-order
connectivityis a multi-hop relation path between items [32], which allows
exploring deeper semantic information about items. A case is shown in Fig. 1-
(b). Even though there are no directly connected edges between iPhone and
Apple Watch, we can still capture the potential semantic relation through a
multi-hop connection (iPhone−→MacBook−→AirPods−→Apple Watch).

While the existing works (e.g., KSR [7], KERL [31] and GFE-SASRec [38])
utilize graph neural networks to model high-order connectivity, they only consider
one type of KG or conflate heterogeneous information of items into a single
vector. To overcome these challenges, we propose a sequential recommendation
model CbiaNet 4 via merging decoupled knowledge graphs. First, we decouple
the KG into two complementary subgraphs, named the cross-user behavior-
based graph and the intrinsic attribute-based graph. Then, two knowledge sub-
extractors encode the two subgraphs independently by graph neural networks
to solve the problem of confounding heterogeneous semantics and to capture
the higher-order connections between items. Next, a hierarchical knowledge
aggregator combines the heterogeneous semantic information to generate high-
level semantic features. Finally, a sequential model incorporating the high-level
semantic features is developed to capture the dynamic preference of the users.
We conduct experiments on three real-world datasets, and the experimental
results show that our proposed CrbiaNet outperforms the existing state-of-the-
art recommendation models. In addition, we extend the high-level semantic
features to several sequential recommendation models, which also improves their
performance.

2 Related Work

2.1 Sequential Recommendation

In order to model the dynamic interests of users, sequential recommendation
methods utilize the user’s historical interaction data. Markov chains are applied
in traditional sequential recommendation methods by estimating the transition
probability between items within the previous action sequence [20,21]. With
the great success of deep learning methods in various fields, many efforts have
been made to model users’ historical interaction sequences by utilizing neural
networks [6,12,9,22,23]. GRU4Rec [6] applies Gated Recurrent Units (GRU) to
the session-based recommendation. NARM [12] further introduces attention-based
GRU by assigning different weights to items of historical interaction sequences.
Besides, Caser [23] and NextItNet [39] introduce Convolution Neural Network

4 The codes are released at https://github.com/paulpig/sequentialRec.git.
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(CNN) to learn sequential patterns as local features by using convolutional
filters. Recently, various studies have validated that self-attention mechanisms
effectively model dependencies between items [9,22]. SASRec [9] utilizes left-to-
right Transformer models [26] to predict the next item. BERT4Rec [22] uses
bidirectional Transformer models (BERT [3]) to encode user interest vectors by
optimizing a Cloze task [24]. Sequential recommendations focus only on the
user’s own interaction sequence, ignoring the similar co-occurrence across users
between items and relationships between items at the attribute level.

2.2 Knowledge-enhanced Recommendation

KGs have been applied in various recommendation models to improve the perfor-
mance of the recommendation where KGs use triples to describe realistic facts,
such as the user-item KG [43], the item-item KG [36], and the item-attribute
KG [43]. Several graph-based recommendation models jointly encode behavior-
level user-item relations and knowledge-level item-item relations to introduce
semantic knowledge from KG into the recommender system, such as KHGT [34],
UGRec [41], and SMIN [14]. However, the above graph-based models cannot
capture the dynamic user preference, so more research is focused on how to utilize
knowledge graphs to enhance sequential recommendation models. Existing studies
on injecting knowledge graphs into sequential models are mainly divided into two
categories: path-based and embedding-based methods. For path-based methods,
MASR [8] introduces meta-paths from the knowledge graph to capture global
contextual information and applies the sequential model to capture the local
contextual information. KARN [43] combines users’ historical behavior sequences
and the path between the user and the target item for recommendation. For
embedding-based methods, KERL [30] uses TransR to obtain semantic features
from KG that are fused into the sequential models. Chorus [28], RCF [36], and
KDA [27] use DistMult to extract semantic features of items from KG by bilinear
objectives and use the semantic features as input to the sequential model. De-
spite these recent advancements, the above knowledge graph embeddings cannot
capture the higher-order connections between items in KG. DHIMN [35] applies
a GCN-based message-passing layer to capture the high-level semantic knowledge
in the KG, but ignores heterogeneous information of item relations in KG.

3 Problem Definition and Notation

3.1 Cross-user Behavior-based Graph (CRBGraph)

In the recommendation domain, item relations extracted from user logs naturally
exist in the datasets [27,15]. For example, the relation also_buy (also_view)
between iPhone and MacBook means that users bought an iPhone and also
bought (viewed) a MacBook afterwards. Here we represent these item relations
with a cross-user behavior-based graph G1, defined as {(h, r, t)|h, t ∈ I, r ∈ Rb}
where I and Rb denote sets of item instances and item relations, respectively.
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The relations between item-item pairs are all positively correlated, so all types
of item relations are reduced to a positive relation. This means that r ∈ {0, 1}
where r = 1 represents that there is a behavior-level link between the item-item
pair.

3.2 Intrinsic Attribute-based Graph (IAGraph)

In addition to behavior-level links between items, there are various types of item
attributes, such as category and brand. Here we utilize the item-attribute pairs
to generate an intrinsic attribute-based graph G2, defined as {(h, r′, a)|h ∈ I, a ∈
A, r′ ∈ Ra}, where I and A denote sets of item instances and attribute values,
and Ra is the set of attribute-level relations. For example, the triple (iPhone,
brand, Apple) represents that the brand of the iPhone is Apple.

3.3 Task Description

Assume that there are M users and N items in the recommender system. Given
the graphs G1,G2 and the interaction sequence Su = [iu1 , i

u
2 , · · · , iuT ] of user u

where iu1 ∈ I and T is the length of the interaction sequence, the knowledge-
enhanced sequential recommendation task is denoted as follows:

i∗u = argmaxik∈IP (iuT+1 = ik|Su,G1,G2)

where iuT+1 is the predicted item at T + 1 time step, and P is the probability
distribution over I.

4 Method

The overview of CrbiaNet is shown in Fig. 2. The knowledge extractor is firstly
employed to obtain heterogeneous item features from two distinct KGs, com-
prising a Behavior-level Knowledge Sub-extractor (BKS) and an Attribute-level
Knowledge Sub-extractor (AKS). Then, the knowledge aggregator applies a hier-
archical integration strategy to generate high-level semantic features by merging
heterogeneous item features. Finally, a sequential interactions modeling layer
merging high-level semantic features is employed to capture the dynamic user
intention from the user’s historical interaction sequence.

4.1 Knowledge Extractor

In this section, we design two types of graph neural networks to encode the
behavior-level and attribute-level higher-order semantic features from the CR-
BGraph and the IAGraph, respectively. To model the CRBGraph, we design
a behavior-level knowledge sub-extractor that aggregates semantic features of
neighbors based on the flow direction of message passing in the graph neural
network. For IAGraph, we aggregate the neighborhood information to the central
node through the relationship-aware attention mechanism of the attribute-level
knowledge sub-extractor.
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Fig. 2: The overall framework of our proposed model.

Behavior-level Knowledge Sub-extractor (BKS) CRBGraph is a directed
homogeneous graph in which each triple contains the time-series relation between
the head and the tail entity. For example, the triple (phone, also_buy, phone
case) means that users bought a phone and then also bought a phone case. Each
node in the CRBGraph appears as a head entity in some related triples and
as a tail entity in the rest of the related triples. This indicates that each node
in the CRBGraph contains two types of time-series relations. To capture these
time-series relations, we construct two-sided semantic features for each node, Hin

and Hout.
Specially, given the item i, one-hop neighbors of i are divided into out-degree

neighbors N out
i and in-degree neighbors N in

i . For example, N out
5 of the item v5

is {v1, v4, v6} and N in
5 is {v2, v3} in Fig. 3-(a). One-side semantic feature of item

i at kth layer, in-degree feature H(k)
in,i, aggregates the features H(k−1)

out,i at (k− 1)th

layer in neighbors N in
i . The other-side feature H(k)

out,i aggregates H(k−1)
in,i in N out

i .
The formula for the aggregation operation is:

H(k)
in,i =

∑
j∈N in

i

1√
|N in

j |
√

|Nout
i |

H(k−1)
out,j , (1)

H(k)
out,i =

∑
j∈Nout

i

1√
|Nout

j |
√

|N in
i |

H(k−1)
in,j (2)

where |N out
i | and |N in

i | are the number of items in N out
i and N in

i , respectively.
A case is shown in Fig. 3-(b), the in-degree features {H(k−1)

in,1 ,H(k−1)
in,4 ,H(k−1)

in,6 } at
(k − 1)th layer of {v1, v4, v6} are propagated to the out-degree feature H(k)

out,5 at
kth layer of the item v5 by Eq. 1. Note that H(0)

out = H(0)
in = Eb, which means

that H(0)
out and H(0)

in are from a shared embedding layer Eb to avoid overfitting.
Next, we stack more layers to capture higher-order item relations by Eq. 1

subject to k > 1 and obtain the final in-degree representation Hin by averaging
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Fig. 3: (a) The items in the orange and blue dashed boxes are the out-degree and
in-degree neighbors; (b) The red and green dashed circles indicate the out-degree
and in-degree features, respectively.

the in-degree item features at each layer. The final out-degree representation Hout

is derived using the similar operation. Finally, we optimize the behavior-level
knowledge sub-extractor using the BPR loss [18]:

LCB = −
∑

(i,j,j′)∈DR

lnσ(ŷij − ŷij′); ŷij = Hout,iHT
in,j (3)

where DR is {(i, j, j′)|(i, r, j) ∈ G1 ∧ r = 1, (i, r′, j′) ∈ G1 ∧ r′ = 0}.

Attribute-level Knowledge Sub-extractor (AKS) Another knowledge sub-
extractor is applied to encode potential attribute-level knowledge of items via a
graph neural network, which can explore the user’s preference at the attribute
level. The high correlation of the attribute information and the preference behavior
has been verified in [11,33].

First, the translation-based method TransR [13] is applied to model the first-
order connectivity of entities in the IAGraph. However, it lacks the encoding of
high-order connectivity between entities. We further introduce a graph attention
network consisting of message propagation layers and message aggregation layers.
For the kth message propagation layer, we use the relation-aware attention
mechanism to integrate neighbors of the central item i:

T
(k)
Fi

=
∑

(i,r,a)∈Fi

π(k)(i, r, a)T(k)
a (4)

where Fi is the set of triples with the item i as the head entity in G2, and T
(k)
a is

the feature of the entity a at kth layer; π(k)(i, r, a) indicates the decay factor of
the triple (i, r, a) in the message propagation [32]:

π(k)(i, r, a) =
exp(f (k)(i, r, a))∑

(i,r′,a′)∈Fi
exp(f (k)(i, r′, a′))

f (k)(i, r, a) = (WrT
(k)
a )⊺tanh

(
(WrT

(k)
i +T(k)

r )
) (5)

where Wr is the relation-aware trainable parameter, and T
(k)
i and T

(k)
r are the

features of the entity i and the relation r. For the kth message aggregation layer,
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T
(k)
Fi

and T
(k)
i are aggregated by two types of feature interactions and a nonlinear

transformation and then passed to the (k + 1)th layer:

T
(k+1)
i = σ

(
W1(T

(k)
i +T

(k)
Fi

)
)
+ σ

(
W2(T

(k)
i ⊙T

(k)
Fi

)
)

(6)

where σ is a LeakyReLU activation layer; W1 and W2 are the trainable parame-
ters; Note that T(0) = Ea where Ea is an embedding table.

To model the higher-order connectivity in the IAGraph, we stack more layers
and average the features of entities at each layer to generate T. To optimize this
sub-extractor, we introduce the BPR-based loss LAT :

LAT = −
∑

(i,r,a,a′)∈DA

lnσ(ȳi,r,a − ȳi,r,a′); ȳi,r,a = TiWa
rT

T
a (7)

where σ is a sigmoid activation layer, and DA is {(i, r, a, a′)|(i, r, a) ∈ G2, (i, r, a
′) /∈

G2}; Wa
r is the trainable parameter.

4.2 Knowledge Aggregator

To merge the heterogeneous content information of each item into a fixed size
embedding, we design a knowledge aggregator by integrating the semantic features
of items extracted from the BKS and the AKS in a hierarchical manner. These
item features consist of two parts: 1) high-order semantic features of items,
including high-order out-degree features Hout, high-order in-degree features
Hin and high-order attribute-based features T; 2) item embeddings, containing
embeddings Eb of input to the AKS and embeddings Ea of input to the BKS. The
fused high-order semantic features Mh

k are integrated by an attention mechanism
that dynamically assigns attention weights to the three high-order semantic
features mentioned above:

Mh
k =

∑
V ∈{Hout,Hin,T}

wk
v ∗Vk,

wk
v =

exp(W1
f tanh(W

2
fVk

T ))∑
Q∈{Hout,Hin,T} exp(W

1
f tanh(W

2
fQk

T ))

(8)

where W1
f and W2

f are the parameters of the attention mechanism. The fused
item embeddings Ml

k are merged using the same attention mechanism. Next, a
learnable gate is introduced to balance the contributions of the fused high-order
item features Mh

k and the fused item embeddings Ml
k:

Gk =σ(W1
gM

h
k +W2

gM
l
k)

Mk =Gk ·Mh
k + (1−Gk) ·Ml

k

(9)

where W1
g and W2

g are the learnable parameters and σ is a sigmoid function; M
is the high-level semantic knowledge.
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4.3 Sequential Interactions Modeling (SIM)

In sequential interactions modeling, sequential models (e.g., GRU4Rec [6], SAS-
Rec [9], and BERT4Rec [22]) are widely used to capture the dynamic user prefer-
ence based on historical interaction sequences. In this paper, we apply SASRec
to encode the user interest representation, which consists of an embedding layer
and self-attention blocks [26]. To inject the rich semantic knowledge extracted
from the two KGs into SASRec, the embedding layer of SASRec is initialized by
the high-level semantic knowledge M extracted from the knowledge aggregator.
Specifically, given M and a user’s interaction sequence Su = [i1, i2, · · · , iT ], the
input embedding is:

ESu = [M0 + P0,M1 + P1, · · · ,MT + PT ] (10)

where P is a position embedding table. Then, we apply self-attentive blocks to
establish dependencies between interactive items and capture the dynamic pref-
erence of the user through multi-head attention layers (MH) and fully connected
feed-forward layers (FNN):

HSu = FFN(MH(ESu)) (11)

where HSu is the hidden representation of the user interaction sequence Su. For
MH and FFN, [26] has a detailed definition. To optimize the SIM, we adopt a
binary cross entropy loss as the objective function:

LSQ = −
∑
Su∈S

∑
t∈[1,2,··· ,T ]

(lnσ(ỹtj) +
∑
k/∈Su

ln(1− σ(ỹtk)); ỹtj = HSu,tMh
j

T

(12)
Note that the fused high-order item features Mh are used as semantic features
of the target items to avoid overfitting.

4.4 Model Learning & Prediction

We use the pre-training and fine-tuning paradigm to better incorporate the
semantic information extracted from KGs into the sequential recommendation
model. Specifically, the BKS and the AKS are first pre-trained according to the
optimization objectives in Eq. 3 and Eq. 7, and then fine-tuned together with the
knowledge aggregator and the SIM using the optimization objective in Eq. 12.
The final objective function of CrbiaNet is:

LCrbiaNet = LSQ + αLCB + βLAT + γ(||θ||22) (13)

where L2 regularization on θ with the weight γ is designed to prevent overfitting,
and α and β are the weights of the loss functions for different knowledge sub-
extractors. In the inference phase, we only use the SIM as an online service to
ensure the efficiency of the service.
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5 Experiment

5.1 Experimental Settings

Datasets We conduct experiments on the Amazon dataset [5], which includes
the interactions between users and items and metadata of items with natural
item relations [28] (e.g., also_view, also_buy) and attributes of items (e.g., price,
brand and category). CRBGraph (G1) and IAGraph (G2) are constructed from
the natural item relations and the attributes of items, respectively. We use three
representative sub-datasets in the Amazon dataset: Beauty(Beauty), Sports and
Outdoors(Sports), and Toys and Games(Toys). The detailed statistics of Amazon
datasets are consistent with [42]. To construct user interaction sequences, we
group user interaction records, sort them according to the timestamps ascendingly.
We filter out users and items with less than five interaction records following
previous studies [9,22].

Parameter Settings and Evaluation Metrics CrbiaNet is trained by the
Adam optimizer [10] with a learning rate of 0.001, where the batch size of the
knowledge sub-extractors (BKS and AKS) and SIM are set as 2048 and 256,
respectively. Gradients are clipped when the gradient norm is greater than five.
The number of layers and the embedding dimensions are set to 2 and 64 for BKS,
AKS, and SIM. Following previous sequential recommendation models [9,22], the
maximum length of the user interaction sequence is set as 50. The weights α,
β and γ are set to 1.0. Besides, the leave-one-out strategy is used for training
and evaluation, and top-k HIT Ratio(HR@k) and top-k Normalised Discounted
Cumulative Gain (NDCG@k) are considered to be ranking metrics. Following
previous studies [9,6], we evaluate the performance of the models by combining
the ground-truth item and 99 randomly sampled non-interactive negative items.

Baseline Methods To validate the effectiveness of our proposed CrbiaNet
model, we select nine previous representative models as baseline methods.

– BPR [19] is a classical Bayesian personalized ranking algorithm with implicit
feedback based on stochastic gradient descent.

– FM [17] considers the combined features based on linear regression.
– GRU4Rec [6] applies GRU [2] to model user interaction sequences for

session-based recommendations with a ranking loss function.
– SASRec [9] is a sequential recommendation model based on deep unidirec-

tional transformers that capture dynamic user interests.
– BERT4Rec [22] uses BERT [3] to encode user interaction sequences by deep

bidirectional transformers.
– FDSA [40] captures the dynamic user preference by simultaneously modeling

both item-level and feature-level(attribute-level) sequences.
– S3-Rec [42] adopts the paradigm of pre-training and fine-tuning, where

attributes are employed in the pre-training phase.



Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 11

Table 1: The performance of our proposed model and previous existing recom-
mendation models on three datasets, where the best results and the second best
results are marked in bold and underlined, respectively.
Datasets Metric BPR FM GRU4Rec SASRec BERT4Rec FDSA S3-Rec Chorus KDA\T CrbiaNet

Beauty

HR@5 0.3602 0.1461 0.3487 0.3754 0.4034 0.4010 0.4502 0.4575 0.4846 0.5123∗

NDCG@5 0.2601 0.0934 0.2580 0.2832 0.3080 0.2974 0.3407 0.3402 0.3654 0.3875∗

HR@10 0.4659 0.2311 0.4460 0.4795 0.5052 0.5096 0.5506 0.5694 0.6008 0.6204∗

NDCG@10 0.2944 0.1207 0.2893 0.3168 0.3408 0.3324 0.3732 0.3766 0.4031 0.4225∗

Sports

HR@5 0.3629 0.1603 0.3208 0.3538 0.3922 0.3855 0.4267 0.4540 0.4504 0.4860∗

NDCG@5 0.2624 0.1048 0.2257 0.2493 0.2852 0.2756 0.3104 0.3346 0.3273 0.3554∗

HR@10 0.4851 0.2491 0.4389 0.4805 0.5203 0.5136 0.5614 0.5823 0.5831 0.6200∗

NDCG@10 0.3018 0.1334 0.2638 0.2900 0.3264 0.3170 0.3538 0.3761 0.3701 0.3988∗

Toys

HR@5 0.3140 0.0978 0.3284 0.3684 0.3926 0.3994 0.4420 0.4290 0.4961 0.5149∗

NDCG@5 0.2286 0.0614 0.2422 0.2712 0.2979 0.2903 0.3270 0.3306 0.3806 0.3974∗

HR@10 0.4138 0.1715 0.4293 0.4751 0.4959 0.5129 0.5530 0.5291 0.6015 0.6217∗

NDCG@10 0.2607 0.0850 0.2746 0.3057 0.3313 0.3271 0.3629 0.3631 0.4147 0.4320∗

– Chorus [28] is a sequential recommendation model with natural item relations
and corresponding temporal dynamics.

– KDA [27] injects natural item relations between items, attributes of items,
and temporal evolution information as additional knowledge into the sequence
recommendation. For the sake of fairness, the temporal evolution information
is removed in this paper and named KDA\T.

5.2 Performance Comparison

Table 1 shows the results of all baselines and our proposed CrbiaNet model on all
datasets. First, sequential recommendation methods (e.g., GRU4Rec, SASRec,
and BERT4Rec) outperform collaborative filtering methods (e.g., BPR and FM)
because the dynamic user preference can be captured by encoding the history
of the user’s interaction with the recommender system. The performance of
sequential recommendation models can be further improved by merging the
attributes of items (e.g., FDSA and S3-Rec), which indicates the attribute-based
side information is helpful for recommender systems. Chorus obtains better
performance due to incorporating behavior-based (natural) item relations. In
addition, KDA\T achieves the previous state-of-the-art performance on the three
datasets by integrating both attributed-based and behavior-based KGs. One
possible reason for this is that the complex relations between the target items
and the items in the user’s historical interaction sequence are explicitly captured
by the KGs.

Then, CrbiaNet consistently outperforms the pure and attribute-enhanced
sequential recommendation models in the three datasets, thanks to the rich
heterogeneous semantic features injected into the sequential interaction model.
Compared with pure sequential recommendation methods (e.g., GRU4Rec, SAS-
Rec, and BERT4Rec), CrbiaNet achieves better recommendation performance,
demonstrating that the underlying semantic knowledge embedded in the KGs
is helpful for capturing the dynamic user preference. CrbiaNet is superior to
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Table 2: The effectiveness of each component of our proposed CrbiaNet on the
three datasets.

Model Metric Beauty Sports Toys

CrbiaNet HR@10 0.6204 0.6200 0.6217
NDCG@10 0.4225 0.3988 0.4320

CrbiaNet-BKS HR@10 0.6033 0.5964 0.5924
NDCG@10 0.4076 0.3801 0.4086

CrbiaNet-AKS HR@10 0.5134 0.5189 0.5203
NDCG@10 0.3396 0.3178 0.3422

CrbiaNet-ADD HR@10 0.6066 0.6145 0.6192
NDCG@10 0.4156 0.3930 0.4274

CrbiaNet-RANDOM HR@10 0.4795 0.4805 0.4751
NDCG@10 0.3168 0.2900 0.3057

FDSA and S3-Rec incorporating only attribute-based knowledge, suggesting that
behavior-based(natural) item relations are helpful for the recommendation. This
shows that co-occurrence patterns from item-item pairs of historical interaction
sequences of similar users mitigate the disadvantage of sparse user interaction
behaviors.

Finally, our proposed CrbiaNet achieves the state-of-the-art performance in
three datasets compared with previous knowledge-enhanced sequential recom-
mendation models (Chorus and KDA\T). The following facts can illustrate these
results: 1) independent modeling of CRBGraph and IAGraph allows encoding
the heterogeneous semantic information of items more efficiently (see the sub-
section 5.4 for more discussion); 2) high-order connections between items in
CRBGraph and IAGraph can be captured by message passing mechanism in
the knowledge extractor; 3) the knowledge aggregator effectively aggregates the
heterogeneous semantic information of items, which helps to dynamically assign
attention weights to different semantic features based on user interest.

5.3 Ablation Study

To investigate the impact of components in CrbiaNet, we compare CrbiaNet with
its four variants:

– CrbiaNet-BKS: This model incorporates only the semantic features extracted
from CRBGraph by the behavior-level knowledge sub-extractor (BKS) into
the sequential interactions modeling (SIM) to demonstrate the impact of
cross-user item relations on recommendation performance.

– CrbiaNet-AKS: This model uses only the semantic features extracted from
the IAGraph via attribute-level knowledge sub-extractor (AKS) to inject into
the SIM.

– CrbiaNet-ADD: This model replaces the complex knowledge aggregator (KA)
with the simple addition operation to fuse heterogeneous semantic features
to validate the effectiveness of the integration strategy.

– CrbiaNet-RANDOM: This model replaces the high-level semantic knowledge
M extracted from KGs with an embedding layer with 0 mean and 0.01
standard deviation.
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Table 2 shows HR@10 and NDCG@10 for these models in all three datasets.
We summarize the following findings. First, the BKS of modeling the cross-user
item relations in the CRBGraph is the most critical component of CrbiaNet.
CrbiaNet-BKS offers significant performance gains over the other three variants
in all three datasets, indicating that co-occurrence patterns from item-item pairs
can guide the extraction of more accurate user interests. Second, CrbiaNet-
AKS outperforms CrbiaNet-RANDOM by utilizing attribute-based semantic
features extracted from the IAGraph, demonstrating the need to incorporate the
attributes of items. In addition, CrbiaNet-AKS outperforms FDSA [40] on both
NDCG@10 and HR@10, which validates that our proposed AKS can effectively
extract attribute-aware high-level semantic knowledge. Last, the difference in
performance between CrbiaNet and CrbiaNet-ADD suggests that the hierarchical
knowledge integration strategy can better integrate heterogeneous semantic
features from the KGs by dynamically assigning attention weights to features.

5.4 Effectiveness of Knowledge Extractor

To validate the effectiveness of our proposed knowledge extractor, we compare
CrbiaNet with three variants in terms of graph construction and graph encoding:

– DisMult: To explore the effectiveness of extracting heterogeneous semantic
features from CRBGraph and IAGraph independently, this model first con-
structs a unified knowledge graph by merging CRBGraph and IAGraph, and
then uses DisMult [37] instead of the knowledge extractor in this paper (for
more details see [36]).

– TransR(IA): This model replaces AKS with TransR [13] to validate the
necessity of potential attribute-aware high-order semantic features for recom-
mendations.

– TransR(CB): This model uses TransR [13] instead of BKS to encode CRB-
Graph to validate the effectiveness of behavior-level high-order item relations.

The results of these variants and CrbiaNet are shown in Fig. 4. CrbiaNet achieves
better performance than DisMult. Two reasons may cause this phenomenon: 1)
CrbiaNet encodes different types of KGs independently to avoid confusion of
heterogeneous semantic features; 2) the bilinear diagonal model (DisMult) cannot
map attribute-level and behavior-level semantic features to the identical semantic
space. Compared to TransR(IA) and TransR(CB), CrbiaNet achieves the best
performance on all three datasets. This shows that high-level semantic features
are practical for sequential recommendations. In addition, the most significant
performance gap is observed between CrbiaNet and TransR(CB), indicating
that behavior-level high-order item relations play a crucial role in encoding the
dynamic user preference.

5.5 Impact of Knowledge Extractor Depth

This subsection considers the impact of the number of layers in the knowledge
extractor to validate the necessity of high-order connections between items
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(d) N@K on Sports

Fig. 4: Performance of the knowledge extractor in CrbiaNet and other extractors
on three datasets.
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(c) Amazon Toys

Fig. 5: Impact of knowledge extractor depth.

in the KGs. The results are summarized in Fig 5. First, we can observe that
recommendation performance is improved by stacking a certain number of layers
in the knowledge extractor, indicating that stacking more layers can explore
higher-order item relations in the KG and mine the potential preference of users.
However, the recommendation performance of CribaNet on Amazon Beauty and
Amazon Toys datasets decreases when more layers are stacked in the knowledge
extractor. This shows that stacking too many layers in the knowledge extractor
may lead to the problem of over-smoothing. This problem is prevalent in the
graph neural networks [16], and we leave the exploration of solving this problem
as future work. In addition, the over-smoothing problem does not affect CribiaNet
on Amazon Sports dataset when the number of layers is stacked to five. The
reason might be that there are more triples in the KG on the Sports dataset than
the other two datasets, and longer-distance item relations are required to encode
the heterogeneous semantic knowledge of items.

5.6 Compatibility of High-level Semantic Knowledge

To explore the validity and compatibility of High-level Semantic Knowledge M
(HSK) mentioned in the subsection 4.2, we conduct an experiment employing the
HSK and its three variants on four sequential models (GRU4Rec [6], NARM [12],
SASRec [9], and BERT [22]): 1) w/o HSK: This method uses randomly initialized
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Fig. 6: The performance of CrbiaNet and its variants under different sequential
models on three datasets.

embeddings to replace the HSK; 2) only fine-tuning HSK: This method only
uses the optimization objective in Eq. 12 to obtain the HSK through fine-
tuning CrbiaNet; 3) only pre-training HSK: This approach only uses the
optimization objectives in Eq. 3 and Eq. 7 to obtain the HSK through pre-training
the knowledge extractor and keeps the HSK constant in the fine-tuning stage.
4) full HSK: This method first pre-trains the knowledge extractor to obtain
the HSK, and then fine-tunes CrbiaNet to adapt the HSK to the sequential
recommendation task.

The experimental results are shown in Fig. 6. First, we can observe that all
sequential models achieve better performance than ‘w/o HSK’ when merging
HSK, indicating that our proposed HSK is compatible and effective with the
sequential recommendation models. In addition, the sequential models’ perfor-
mance decreases on both ‘only fine-tuning HSK’ and ‘only pre-training HSK’
compared to ‘full HSK’, which suggests that our proposed HSK can fully exploit
the deeper underlying semantic features in the heterogeneous KGs.

6 CONCLUSION

In this paper, we propose a CrbiaNet for sequential recommendation by merging
heterogeneous semantic features of entities extracted from decoupled KGs. In
our approach, we decouple the original KG in the recommendation domain into
two subgraphs, named the cross-user behavior-based graph and the intrinsic
attribute-based graph. Then, we propose two knowledge sub-extractors to acquire
higher-order features of entities with different semantics independently by graph
neural networks. Finally, the high-order semantic features are combined and
fed into the sequential recommendation model to enhance the representation
of the user preference. We construct experiments on Amazon datasets, and the
experimental results show that CrbiaNet outperforms the previous state-of-the-art
recommendation models.
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