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Abstract. Scene graph generation aims to capture the semantic ele-
ments in images by modelling objects and their relationships in a struc-
tured manner, which are essential for visual understanding and reasoning
tasks including image captioning, visual question answering, multimedia
event processing, visual storytelling and image retrieval. The existing
scene graph generation approaches provide limited performance and ex-
pressiveness for higher-level visual understanding and reasoning. This
challenge can be mitigated by leveraging commonsense knowledge, such
as related facts and background knowledge, about the semantic elements
in scene graphs. In this paper, we propose the infusion of diverse com-
monsense knowledge about the semantic elements in scene graphs to gen-
erate rich and expressive scene graphs using a heterogeneous knowledge
source that contains commonsense knowledge consolidated from seven
different knowledge bases. The graph embeddings of the object nodes
are used to leverage their structural patterns in the knowledge source
to compute similarity metrics for graph refinement and enrichment. We
performed experimental and comparative analysis on the benchmark Vi-
sual Genome dataset, in which the proposed method achieved a higher
recall rate (R@K = 29.89, 35.4, 39.12 for K = 20, 50, 100) as compared
to the existing state-of-the-art technique (R@K = 25.8, 33.3, 37.8 for
K = 20, 50, 100). The qualitative results of the proposed method in a
downstream task of image generation showed that more realistic images
are generated using the commonsense knowledge-based scene graphs.
These results depict the effectiveness of commonsense knowledge infu-
sion in improving the performance and expressiveness of scene graph
generation for visual understanding and reasoning tasks.
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1 Introduction

During the past few years, recent advances in deep learning techniques and multi-
modal approaches have helped in solving several challenging problems in visual
understanding tasks including object detection [57] and visual relationship de-
tection [14,32,35]. Numerous efforts have been made to effectively capture and
describe the image features and object relationships in a structured and explicit
way. In this direction, Scene Graph Generation (SGG) [46,48,3] has attracted
significant attention due to its capability to capture the detailed semantics of
visual scenes by modelling objects and their relationships in a structured man-
ner. Graph-based structured image representations like scene graphs are used
in a wide range of visual understanding tasks including image reconstruction
[11], image captioning [61], Visual Question Answering (VQA) [22,25], image re-
trieval [55], visual storytelling [54] and multimedia event processing [5,20]. The
performance of SGG is compromised by challenges including bias and annota-
tion issues in crowd-sourced datasets [23,7]. Several efforts have been made by
researchers in this field to address these challenges by making use of state-of-
the-art approaches, such as counterfactual analysis [48], self-supervised learning
[40] and linguistic supervision [62]. However, there is still a need for significant
improvement in the expressiveness, accuracy and robustness of SGG methods.

In addition to the objects and their relationships in scene graphs, higher-level
visual reasoning for the downstream tasks mentioned in the last paragraph re-
quires background information about the scene and its constituents to mimic the
cognitive ability of humans to use commonsense reasoning. Leveraging and rea-
soning with commonsense knowledge is quite challenging because of its implicit
nature; it is universally accepted and used by humans in everyday situations but
generally disregarded when we speak or write. Most of the existing SGG meth-
ods use datasets that contain large collections of images along with annotations
of objects, attributes, relationships, scene graphs, etc., such as, Visual Genome
(VG) [23] and VRD [31]. These datasets have limited or no explicit commonsense
knowledge, which limits the expressiveness of scene graphs and the higher-level
reasoning capabilities in the downstream tasks unless commonsense knowledge
is infused from external sources. There are several publicly available sources
[50,44,43,21] that include different forms and notions of commonsense knowl-
edge. Some consolidation efforts [17,9] have been made to unify the different
sources into a global commonsense knowledge source to jointly exploit their di-
verse knowledge and coverage. These consolidated sources have been integrated
and used in language processing methods [33,58] for improving their robustness
and expressiveness. The consolidated commonsense knowledge sources have not
been leveraged for visual understanding and reasoning yet, however, their ca-
pability to provide rich and diverse background information and relevant facts
about the concepts in a scene can help in improving the performance of SGG and
providing rich and expressive scene representations for downstream reasoning.

Figure 1 shows a motivating example of an image and its commonsense
knowledge-based scene graph representation. The scene graph of the image con-
tains the relationship triplets (woman, holding, racket) and (woman, on, ten-
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Fig. 1. A motivating example of a scene graph of an image with commonsense knowl-
edge infusion using CommonSense Knowledge Graph (CSKG). The scene graph (blue)
provides information about the objects and their pairwise relationships in the scene.
The relevant nodes and edges extracted from CSKG (green) complement and enrich
the scene graph by providing the necessary information about the possible spatial prox-
imity of objects relative to each other and any possible interactions between objects,
i.e. (woman, at, tennis court) and (woman, holding, racket), and more importantly the
background information and related facts, i.e. (woman, capableOf, playing tennis) and
(racket, usedFor, playing tennis), which allows higher-level reasoning to deduce “the
woman is playing tennis”.

nis court) representing the objects and their pairwise interactions. Though it
is easy and straightforward for us to infer that the woman is playing tennis, it
is challenging for machines to infer that without some external commonsense
knowledge. The relevant nodes and edges extracted from the CommonSense
Knowledge Graph (CSKG) [17] including (woman, capableOf, playing tennis)
and (racket, usedFor, playing tennis) provide the necessary background infor-
mation and facts for higher level reasoning. In this paper, we propose a com-
monsense knowledge-based SGG method that generates scene graph of an image
and infuses the background knowledge and relevant facts about the concepts in
the scene graph from CSKG [17], which is a large consolidated commonsense
knowledge source. Graph embeddings were leveraged to compute the similarity
of object nodes in the graph refinement and enrichment steps because similar
entities tend to have similar vector representations in the embedding space [38].
The commonsense knowledge complements and enriches the scene graph rela-
tionships, which improves the performance of SGG and the expressiveness of
scene graph representations. We evaluated the proposed method on the bench-
mark VG dataset and noted improvement of relationship prediction results for
SGG. The encouraging experimental results depict the potential of commonsense
knowledge in scene graph generation and its promising applications in visual un-
derstanding and reasoning. The main contributions of this paper include:

1. We propose a commonsense knowledge-based scene graph generation ap-
proach, which extracts background knowledge and relevant facts from com-
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monsense knowledge sources based on graph embeddings and integrates them
in the scene graphs to generate rich and expressive scene graph representa-
tions of images. We employed a heterogeneous knowledge graph [17], contain-
ing rich commonsense knowledge consolidated from seven diverse sources,
which has not been investigated for visual understanding and reasoning yet.

2. We performed experimental and comparative analysis (shown in Figure 4,
Figure 5 and Table 2) on the benchmark Visual Genome dataset using
the standard metric, and showed that the proposed method achieved a
higher recall rate (R@K = 29.89, 35.4, 39.12 for K = 20, 50, 100) as com-
pared to the existing state-of-the-art technique (R@K = 25.8, 33.3, 37.8 for
K = 20, 50, 100).

3. We employed image generation as a downstream task of scene graph gener-
ation and showed improved results of image generation from scene graphs
after commonsense knowledge infusion as shown in Figure 6.

2 Related Work

2.1 Scene Graph Generation

Scene graph generation (SGG) is a challenging research problem and is actively
investigated by researchers in computer vision. In the compositional methods, the
subject, predicate and object are separately detected and aggregated later. Li et
al. [26] used detected objects in an image to generate separate region proposals
for subject, predicate and object; these region proposals are aggregated with
features from a deep neural network (DNN) to reach a triplet prediction. Such
methods are scalable, but they have very limited performance in the case of rare
or unseen relations. The visual phrase models for visual relation detection treat
relation triplets as a single entity. Sadeghi et al. [42] employed DNNs to predict
objects as well as visual phrase or triplets and then refined those predictions
by comparing them to other predictions in the image. Deep relational networks
are also used for visual relation detection, in which the DNN also leverages
the statistical dependency among objects and predicates [6]. The visual phrase
models are less sensitive to the diversity of visual relations as compared to the
compositional models, but they require a greater number of training examples
in datasets with a large vocabulary of objects and predicates.

The more recent scene graph generation and visual relationship detection
methods fuse visual and semantic embeddings in DNNs to detect visual rela-
tions on a large scale. Zhang et al. [67] extract visual features in three branches
each for the subject, predicate and object, with the predicate branch fusing its
features with the subject and object features at a later stage to leverage the
interactions between subject and object for relation detection. During learning,
features extracted from the text space are also embedded as labelling for the
visual features. In a similar approach with improved precision, Peyre et al. [39]
add a visual phrase embedding space during learning to enable analogical rea-
soning for predicting unseen relations and to improve robustness to appearance
variations of visual relations. Tang et al. [48] attempted to address the problem
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of bias in SGG models due to the unbalanced distribution of relationships in
datasets by leveraging causal inference and total direct effect.

Most of the existing works focus on visual and linguistic patterns in images
while neglecting the background information and related facts about concepts
in images and the structural patterns of scene graph elements in commonsense
knowledge graphs, which have significant potential in understanding and inter-
pretation of visual concepts. Only a few recent works mentioned in the next
subsection explicitly leverage commonsense knowledge graphs for visual under-
standing and reasoning.

Table 1. Commonsense Knowledge Sources

Knowledge
Source

Knowledge Type Size Example

ConceptNet
[44]

Text-based knowledge
about everyday objects,
activities, relations, etc.

8M nodes, 36 relations
& 21M edges

(chair, used for, sitting)

Wikidata [50] General taxonomic
knowledge about in-
stances, concepts, rela-
tions etc.

75M objects, 1200 rela-
tions & 900M edges

(eating, subclass of, in-
gestion)

ATOMIC [43] Procedural knowledge
about pre/post condi-
tions of events

0.3M nodes, 9 relations
& 0.877M edges

(PersonX eating din-
ner, xEffect, satisfies
hunger)

Roget [21] Lexical knowledge about
words, relations, etc.

72k words, 2 relations
& 1.4M edges

(motorcycle, synonym,
bike)

FrameNet [2] Lexical knowledge about
frames, roles, relations,
etc.

1.2k frames, 12k roles,
1.9k edges & 13k lexical
units

(cooking creation, has
frame element, pro-
duced food)

Wordnet [36] Lexical knowledge about
words, concepts, rela-
tions, etc.

0.155M words, 10 rela-
tions & 0.176M synsets

(car, has part, air bag)

Visual
Genome
[23]

Visual knowledge about
objects, relations and at-
tributes in images

108k images, 3.8M
nodes, 42k relations,
2.3M edges & 2.8M
attributes

(food, on, plate),
(woman, looking at,
sandwich)

CSKG [17] Consolidated common-
sense knowledge from the
above seven sources

2.16M nodes, 58 rela-
tions, 6M edges

(racket, used for, play-
ing tennis)
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2.2 Commonsense Knowledge Sources and Infusion

The acquisition and representation of commonsense knowledge and reasoning
with it have been one of the major challenges in artificial intelligence since the
1960s [34], which has led the research community to develop and curate several
knowledge sources containing commonsense knowledge in different forms and
contexts [16]. Some of the popular sources of commonsense knowledge along
with their details are presented in Table 1. Some of these sources, especially
ConceptNet [44], have been used in a few visual understanding and reasoning
techniques. These techniques either extract relevant facts from a source and
embed them in the model at a certain stage [11,37,45,66], or use graph-based
message passing to embed the structural information from the source in the
representations of the model [64,4,56,24]. Chen et al. [4] and Zellers et al. [66]
incorporated commonsense knowledge from dataset statistics by employing pre-
computed frequency priors in their predicate classification models to improve
the performance of SGG. Wan et al. [51] proposed the use of a commonsense
knowledge graph along with the visual features to enhance predicate detection
for detected objects in visual relation detection. Gu et al. [11] retrieve relevant
facts from a single source, i.e. ConceptNet [44] for each object, encode the facts
into its features using recurrent neural networks and an attention mechanism
in SGG. Kan et al. [19] infused commonsense knowledge from ConceptNet for
zero-shot relationship prediction in SGG. The existing approaches mostly infuse
triplets from the knowledge sources and ignore the rich structural information
beyond individual triplets.

The knowledge sources are rich and diverse and cover different domains and
contexts of commonsense knowledge, which can be consolidated to provide a rich
and heterogeneous source of commonsense knowledge and to increase its impact
in the downstream reasoning tasks. Zareian et al. [63] proposed GB-Net, which
links the entities and edges in a scene graph to the corresponding entities and
edges in a commonsense graph extracted from VG, WordNet and ConceptNet,
and iteratively refine the scene graph using graph neural network-based message
passing. Guo et al. [12] employed an instance relation transformer to extract re-
lational and commonsense knowledge from VG and ConceptNet for SGG. These
are the only SGG approaches that leverage multiple knowledge sources, while a
subset [53] of DBpedia, ConceptNet and WebChild containing knowledge about
visual concepts has been used in VQA [56,30]. The CommonSense Knowledge
Graph (CSKG) [17] is currently the latest and largest consolidated source that
integrates commonsense knowledge from the seven diverse and disjoint sources,
including ConceptNet [44], Wikidata [50], ATOMIC [43], VG [23], Wordnet [36],
Roget [21] and FrameNet [2]. Ma et al. [33] employed CSKG in language mod-
els and achieved the best performance in commonsense question answering by
utilizing the diverse relevant knowledge from CSKG and aligning the knowledge
with the task. To the best of our knowledge, the use and potential of CSKG have
not yet been explored for visual understanding and reasoning tasks.

The knowledge-infusion methods also leverage knowledge graph embeddings,
which are widely adopted in the vector representation of entities and relation-
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ships in knowledge graphs [38]. The knowledge graph embeddings capture the
latent properties of the semantics in the KG, due to which similar entities are
represented with similar vectors. The similarity of entities in the vector space
is interpreted using vector similarity measures, such as cosine similarity. Knowl-
edge graph embeddings have been used in several link prediction tasks including
visual relationship detection [1] and recommender systems [52].

3 Proposed Method

The proposed commonsense knowledge-based scene graph generation method
employs a DNN-based approach for detecting objects and their pairwise rela-
tionships in an image to generate its scene graph, which is followed by common-
sense knowledge infusion using CSKG [17] for the enrichment of scene graph
with background knowledge and relevant facts in the form of triplets. Figure 2
provides a detailed overview of the proposed method. The proposed method is
built on the SGG toolkit [47].

Following the trend in recent SGG methods [59,66,49,48], we use Faster
RCNN [41] for detecting objects in the images. We use ResNeXt-101-FPN ar-
chitecture [29] as the backbone CNN for Faster RCNN. The Faster RCNN takes
an image I as input and provides the object bounding boxes b and object class
labels l of the n detected objects. The feature maps F are also extracted from
the underlying CNN in the Faster RCNN.

{b, l, F} = FasterRCNN(I) (1)

After detecting the objects and extracting the feature maps, the relationships
between object pairs are predicted. RoIAlign [13] is applied to the image regions
I[b], which provides the region features a of each detected object.

a = RoIAlign(I[b]) (2)

For all n objects, Bi-directional Long Short Term Memory (Bi-LSTM) layers
[66] are used to encode a, I[b] and l as the individual visual context features vi.

v = BiLSTM(a, I[b], l) (3)

The individual visual context features of objects are encoded by another set
of Bi-LSTM layers and concatenated into combined pairwise object features
vij |i ̸= j; i, j = 1, ..., n.

vij = concat(BiLSTM(vi), BiLSTM(vj)) (4)

In the same way, the pairwise object labels (li, lj) are encoded through an
embedding layer to compute the language prior pij . The contextual union fea-
tures uij are extracted by applying RoIAlign to the union regions of pairwise
objects in F .

uij = conv(RoIAlign(F [bi ∪ bj ])) (5)
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Fig. 2. The proposed commonsense knowledge-based scene graph generation method

Finally, all the three types of features representing the object pairs are fused
using a summation feature fusion function [8] followed by a softmax function to
predict the relationship class labels rij and the relationship class probabilities
cij .

{rij , cij} = softmax(SUM(vij , uij , pij)) (6)

The scene graph S is formed by linking the pairwise objects and relationships
into a graph structure.

S = {li, rij , lj} (7)
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Algorithm 1: Graph refinement

Input: S, b
Output: Sr

1 Sr = []
2 for each triplet ∈ S do
3 e1 = cskg emb(triplet[node1])
4 e2 = cskg emb(triplet[node2])
5 b1 = b[triplet[node1]]
6 b2 = b[triplet[node2]]
7 metricsim = cosine sim(e1, e2)
8 metricIoU = compute IoU(b1, b2)
9 if metricsim ⩽ τsim ∧metricIoU ⩽ τiou then

10 Sr.append(triplet)

Algorithm 2: Graph enrichment

Input: S, Gcskg

Output: Se

1 Se = S
2 for each node ∈ S do
3 e1 = cskg emb(node)
4 tripletscskg = query(Gcskg, node)
5 tripletscskg = preprocess(tripletscskg)
6 for each triplet ∈ tripletscskg do
7 if node == triplet[node1] then
8 e2 = cskg emb(triplet[node2])

9 else
10 e2 = cskg emb(triplet[node1])

11 s = cosine sim(e1, e2)
12 if s ⩾ τ ∧ triplet /∈ Se then
13 Se.append(triplet)

14 Se = postprocess(Se)

In order to infuse relevant triplets representing background knowledge and
related facts from the CSKG [17], we parse the scene graph to a format compati-
ble with the CSKG data model. Since similar entities tend to have similar vector
representations in the embedding space [38], we leverage the graph embeddings
to compute the similarity of nodes for various operations in the graph refinement
and enrichment steps. The scene graph predictions are first refined using Algo-
rithm 1 to discard any redundant or irrelevant predictions. The predicted objects
with highly overlapping bounding boxes, similar names, or the same structural
pattern in CSKG indicate the possibility of multiple redundant predictions of
the same object. Such prediction errors are minimized at this stage by discarding
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the object nodes that have a high intersection over union (IoU) of its bounding
box or a high similarity score of CSKG embedding with another object node.

We use the Knowledge Graph Toolkit (KGTK) [15] to query CSKG and ex-
tract triplets from CSKG that include a subject or object node in the predicted
scene graph. After extraction, any duplicate triplets and the triplets with both
nodes similar (e.g. (person, synonym, person) and (chair, similarTo, chair)) are
discarded in the preprocessing step because they do not provide any useful infor-
mation. Based on the embedding similarity of the object nodes and the extracted
nodes, the extracted nodes with reasonable structural similarity with the corre-
sponding object nodes are linked via extracted edges in the scene graph. If an
extracted node is already present in the scene graph, the new edge is linked to the
existing node, otherwise, the new node is created and linked in the scene graph.
In postprocessing, the format of the enriched scene graph is adjusted according to
the original scene graph representation so that the enriched scene graphs can be
evaluated for performance comparison or can be used in a downstream reasoning
task. Since the predicates integrated from VG are expressed as ”LocatedNear”
edge type in the CSKG, we replaced the predicates in triplets extracted from the
VG source in CSKG with the most frequent predicate type between the nodes in
the original VG dataset. This post-processing step uses statistical prior knowl-
edge from VG about the possible predicates between a pair of objects (nodes) in
relationships to further interpret the relationship predicate. Algorithm 2 gives
an overview of the steps in extracting commonsense knowledge from CSKG and
integrating it into the scene graph. The thresholds in both algorithms were set
to 0.5 for the experimental evaluation. These thresholds determine the trade-off
between the number and the accuracy of detected and infused relationships.

4 Experiments and Results

4.1 Experimental Setup

Dataset We used the commonly used subset [59] of the Visual Genome dataset
containing the most frequent 50 predicate classes and 150 object classes for
training Faster RCNN, SGG model and image generation network. 70% of the
training samples were used for training, out of which 5000 samples were used for
validation during training. The remaining 30% samples were used for evaluation.
The longer dimension of each image was resized to 1024 pixels and the shorter
dimension is adjusted accordingly. We use the pre-trained CSKG embeddings [17]
for computing the similarity of nodes in the graph refinement and enrichment
steps of the proposed approach.

Evaluation Protocol We used the cross-entropy loss to evaluate the training
performance of the Faster RCNN and SGG models. Mean average precision
(mAP) [10] was used to evaluate the object detection performance of Faster
RCNN. For evaluating the performance of SGG before and after commonsense
knowledge infusion, we used the most widely used metric, Recall@K (R@K) [31],
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which is defined as the fraction of times the correct relationship is predicted in
the top K confident relationship predictions. We compared the performance of
the proposed method and recent SGG methods using the standard metric and
benchmark dataset. We also analysed some qualitative results of the proposed
method. Additionally, we employed an existing image generation method [18] as
a downstream task of scene graph generation to further evaluate the proposed
method by comparing the results of image generation from scene graphs before
and after commonsense knowledge infusion.

Fig. 3. Training progress plots along with periodic validation checks of the Faster
RCNN and SGG models.

Fig. 4. Comparison of Recall@K of SGG before and after commonsense knowledge
infusion.
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Table 2. Comparison of the proposed method with the existing state-of-the-art SGG
approaches in terms of Recall@K (R@K) on the Visual Genome dataset

SGG Method Approach Commonsense
Knowledge
Source

R@20
(%)

R@50
(%)

R@100
(%)

Proposed
Method
(SGG+CSKG)

Scene graph enrichment
via commonsense knowl-
edge infusion from differ-
ent sources

CSKG [17] 29.89 35.4 39.12

GLAT [65] Transformer-based GNN
for visual commonsense
reasoning

- - - 38.8

Unbiased SGG
[48]

Causal inference and total
direct effect

- 25.8 33.3 37.8

Proposed
Method (SGG
Only)

Scene graph generation
based on fusion of visual
(region and object) and
text features

- 26.1 32.7 36.5

GB-Net [63] Message passing between
scene graphs and com-
monsense graph

ConceptNet [44],
WordNet [36],
Visual Genome
[23]

- 29.4 35.1

VCTree [49] Dynamic tree structures
and Bi-dir TreeLSTM

- 22 27.9 31.3

IRT-MSK [12] Instance Relation Trans-
former with Multiple
Structured Knowledge

ConceptNet [44],
Visual Genome
[23]

22.2 27.2 31.2

Neural Motifs
[66]

Stacked Motif Networks - 21.7 27.3 30.5

KERN [4] Knowledge-embedded
routing network

- - 27.1 29.8

COACHER [19] Zero-shot relationship
prediction via common-
sense infusion

ConceptNet [44] 13.42 19.31 22.22

KB-GAN [11] Commonsense and
reconstruction-based
object and phrase refine-
ment

ConceptNet [44] - 13.65 17.57

FactorizableNet
[27]

Clustering-based graph
factorization

- - 13.06 16.47

MSDN [28] Scene description at ob-
ject, phrase and caption
levels

- - 10.72 14.22

Graph RCNN
[60]

RPN followed by Atten-
tion GCN

- - 11.4 13.7

IMP [59] Object and relationship
feature refinement via
message passing

- - 3.44 4.24
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4.2 Results

Training and Evaluation of Models We trained the Faster RCNN model
on the images and groundtruth annotations of objects in the Visual Genome
dataset with Stochastic Gradient Descent (SGD) as an optimizer, batch size
of 2 and initial learning rate of 0.002 which was decayed by a factor of 10
after 60k and 80k iterations. We froze the trained Faster RCNN and trained
the whole SGG model on the images and groundtruth annotations of objects
and relationships in the Visual Genome dataset using SGD as an optimizer,
batch size of 4 and initial learning rate of 0.04 which was decayed by a factor
of 10 twice during training when the validation performance stops improving
noticeably. The plots of training loss and validation mAP for object detection
and training loss and R@K for scene graph detection are shown in Figure 3,
which show a smooth convergence of the models during the training process.
The Faster RCNN model achieved 29.19mAP (using 0.5 IoU threshold), while
the SGG model achieved R@K = 26.1, 32.7, 36.5 for K = 20, 50, 100 on the test
set. The training and evaluation of the SGG model was performed in the Scene
Graph Detection (SGDet) setting.

Evaluation after commonsense knowledge infusion We repeated test-
ing of the scene graph generation method after adding the proposed common-
sense knowledge infusion steps and achieved R@K = 29.89, 35.4, 39.12 for K =
20, 50, 100 on the test set, which is considerably higher than the R@K values
achieved for the scene graph generation without commonsense knowledge infu-
sion steps, as shown in Figure 4. The diverse commonsense knowledge integrated
into the scene graphs from CSKG includes visual cues about the spatial proxim-
ity of objects in the scene relative to each other and physical interactions between
the objects from the knowledge base of Visual Genome. This helps in mitigat-
ing some missed or wrong predictions made during scene graph generation and
improves the recall rate for relationship prediction.

Comparative Analysis A detailed comparative analysis of the proposed ap-
proach with the existing scene graph generation methods is presented in Table
2. The proposed method incorporates the latest, largest and most diverse com-
monsense knowledge source from a consolidation of 7 distinct sources, and thus
achieves higher recall score (R@K = 29.89, 35.4, 39.12 for K = 20, 50, 100) for
SGG on the benchmark Visual Genome dataset as compared to the state-of-the-
art technique (R@K = 25.8, 33.3, 37.8 for K = 20, 50, 100).

Qualitative Results Some qualitative results of the proposed method on Vi-
sual Genome images are shown in Figure 5. In addition to the objects and their
pairwise visual relationships, the commonsense knowledge-based scene graphs
contain the background facts about the underlying concepts, additional knowl-
edge about the spatial proximity of objects in the scene relative to each other,
and possible physical interactions between the objects. The useful background
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facts include (person, requires, eating) and (food, usedFor, eating) in Figure
5(a). The commonsense relationships about spatial proximity such as (tree, on,
street) in Figure 5(b) and the commonsense relationships about object interac-
tions such as (person, holding, surfboard) in Figure 5(c) complement the scene
graph representations.

Fig. 5. Some qualitative results of the proposed commonsense knowledge-based scene
graph generation method.

Downstream Task The rich and heterogeneous scene representations gener-
ated by the proposed method can significantly improve the downstream visual
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Fig. 6. Results of image generation using scene graphs generated by the proposed
method.

reasoning tasks including image captioning, image generation, VQA, image re-
trieval, visual storytelling and multimedia event processing.

We employed an existing image generation method [18] as a downstream
task of scene graph generation to further evaluate the proposed method. We
trained the image generation network on the Visual Genome subset that was
used to train the scene graph generation model. The trained network was used
to generate images from scene graphs before and after commonsense knowledge
infusion. The results of image generation from scene graphs are presented in
Figure 6, which shows that the commonsense knowledge-based scene graphs
generate more realistic images in which the semantic concepts in the input scene
graph can be more clearly observed.
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5 Conclusion

The use of commonsense knowledge for expressive and accurate visual under-
standing is inevitable due to its potential in complementing scene representa-
tions by providing necessary information for higher-level reasoning. In this pa-
per, we propose a commonsense knowledge-based scene graph generation ap-
proach, which enriches the scene graph of an image with background knowl-
edge and relevant facts extracted from CSKG, which is the latest, largest, and
most diverse commonsense knowledge source. In the experimental and compar-
ative analysis on the benchmark Visual Genome dataset, the proposed method
achieved a higher recall rate (R@K = 29.89, 35.4, 39.12 for K = 20, 50, 100)
as compared to the existing state-of-the-art technique (R@K = 25.8, 33.3, 37.8
for K = 20, 50, 100). We further evaluated the proposed method by employ-
ing image generation as a downstream task and showed improved qualitative
results of image generation from scene graphs after commonsense knowledge
infusion. The promising results depict the effectiveness of the rich and heteroge-
neous commonsense knowledge-based scene graph representations in improving
the expressiveness and performance of visual reasoning tasks. In future work, we
will investigate zero-shot and few-shot SGG using consolidated commonsense
knowledge to reduce computational costs and requirement of training data and
to allow the SGG model to predict unseen or rare object and predicate cate-
gories. We will also evaluate the efficacy of the proposed method in downstream
reasoning tasks including multimedia event processing, image captioning, visual
question answering and image retrieval.
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