
Chowlk: from UML-based ontology
conceptualizations to OWL⋆

Serge Chávez-Feria[0000−0002−7454−9202],
Raúl Garćıa-Castro[0000−0002−0421−452X], and
Maŕıa Poveda-Villalón[0000−0003−3587−0367]

Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
serge.chavez.feria@upm.es, {rgarcia, mpoveda}@fi.upm.es

Abstract. Ontology conceptualization is an ontology development task
that consists in generating a preliminary model based on the require-
ments that the ontology should represent. This activity is often carried
out by generating the models as diagrams in a blackboard, paper or
digital tools. The generated models drive the ontology implementation
activity, where the model is formalized and completed using an imple-
mentation language. Normally, the ontology conceptualization output
serves as guidance for the ontology implementation; however, ontology
implementation is usually done from scratch using ontology editors. The
goal of this work is to consider ontology conceptualizations as first-order
artifacts in ontology development in order to boost the ontology im-
plementation activity. For doing so we present Chowlk, a framework to
transform digital machine-processable ontology conceptualization dia-
grams into OWL. Domain experts and ontologists benefit from this ap-
proach in several ways: 1) reduce time generating the first versions of
the OWL file that can be invested on 2) focusing on the conceptualiza-
tion diagrams that can be used both for 3) improving communication
between ontology users and developers and 4) be reused during the on-
tology documentation stage.

Keywords: Ontology engineering · ontology conceptualization · OWL

1 Introduction

Everyday more and more applications are being built on top of or in combination
with semantic technologies. Ontologies play a crucial role in this development
as they allow the representation of knowledge in a formal and structured way,
being the OWL [4] language the default choice for their implementation because
of its high level of expressiveness, reasoning capabilities and the fact that it has
been designed for the web environment.

One of the first and most important steps in ontology development is the con-
ceptualization one, during which the ontology development team defines a set of

⋆ This work has been supported by the BIMERR funded from the European Union’s
Horizon 2020 research and innovation programme under grant agreement no. 820621.



2 Serge Chávez-Feria, Raúl Garćıa-Castro, and Maŕıa Poveda-Villalón

concepts and properties to represent the knowledge of a specific domain. Often,
this conceptualization is materialized in a diagram that displays the relation-
ships, attributes and axioms of the different concepts of an ontology. From this
model, the ontology implementation is carried out normally using an ontology
editor, such as Protégé [11], realizing the model into OWL code.

However, in this process the diagram is in most of the cases only used as
a guideline to implement the ontology, translating the ontological elements and
constructs to a formal syntax, being this process mostly manual and error-prone.
Some tools have been proposed in the last years that allow the graphical creation
or modification of ontologies following their respective visual notations [16, 2].

In our case, rather than building a graphical ontology editor, the effort is
driven towards the goal of allowing a smoother transition from the concep-
tualization activity to a first version of the actual implementation by taking
the conceptualization output as a first order artifact in ontology development
projects. For doing so, the Chowlk framework has been designed. The frame-
work, shown in Figure 1, consists of: 1) an UML-based visual notation; 2) a pair
of diagrams.net templates implementing the visual notation; and 3) a converter
from diagrams.net XML diagrams to OWL. It should be clarified that the re-
source presented in this paper is the converter that will be detailed in Section
3). However, for a better understanding of the converter, the visual notation is
briefly presented in Section 2.

It should be clear at this stage that our goal is to fill the gap between the
conceptualization and implementation of ontologies which is still a manual pro-
cess, and as every manual procedure, it can be prone to errors. Even though,
it is true that users can create ontologies directly in specialized editors such as
Protégé [10] and avoid the creation of a diagram, our focus is on ontology users
who follow developments where the conceptualization is the corner stone of the
development process, and want to take full advantage of the effort made in the
conceptualization step, for example to communicate and verify the model with
users or clients as well as for documenting the ontology to publish or share it.

The validation of the Chowlk converter is described in Section 4 while a
comparison with existing approaches is presented in Section 5. Future lines of
work to evolve and improve the present work are proposed in Section 6.

Fig. 1: Chowlk framework.



Chowlk: from UML-based ontology conceptualizations to OWL 3

2 Visual notation

The converter presented in this paper is based on the Chowlk visual notation that
extends the UML Ont profile [7]. It should be mentioned that while the original
UML Ont profile utilizes custom stereotypes and dependencies to cover OWL 1
constructs, the Chowlk notation binds the stereotypes used in the profile to OWL
and RDF(S) constructs. Also, the visual notation used in this work proposes
compact alternatives for representing property characteristics and axioms.

Due to the fact that the notation is considered an input for the converter
instead of part of the resource presented in this paper, and for space matters,
in this section only the main characteristics of the notation are included. While
the notation has been partially published in [6], a more complete and updated
version, including examples and alternative notation elements for those presented
in this paper, is provided in the notation website.1

Figure 2 provides an overview of the notation of the main OWL elements.
Named classes are represented by labelled boxes. Unlabelled boxes or circles
are used to represent anonymous classes and class intersections, unions, equiva-
lences and disjoints. Object properties are represented by labelled arrows and
datatype properties by labelled boxes attached to class boxes. Note that both
types of properties can be represented by diamonds, notation needed in some
cases, for example to represent equivalences or property hierarchies for datatype
properties. For object properties, the relations between them (subproperty of, in-
verse or equivalent) can be represented both by arrows linking either the arrows
representing the properties or the diamonds representing them.

Property characteristics (functional, inverse functional, transitive and
symmetric) can be indicated before the property name or stating the charac-
teristic construct in the diamond. Class constraints are represented between
classes including the operator (universal, existential o cardinality) before the
property over which the constraint is stated for subclass constraints. For equiv-
alent class constraints or constraints in domains or ranges, unlabelled boxes are
used in combination with the equivalent or domain/range indicator.

The Chowlk visual notation also allows to declare namespaces, for example to
link entities from different ontology modules within a network or to indicate the
reuse of other ontology elements. Finally, the notation includes a metadata block
used not only for documenting the diagram but for ontology metadata generation
during the conversion phase. The metadata is stated in a printed-document alike
shape and makes use of the prefixes defined in the namespaces building block.
Examples of namespaces and metadata blocks are shown in Figure 3.

1 https://chowlk.linkeddata.es/notation.html



4 Serge Chávez-Feria, Raúl Garćıa-Castro, and Maŕıa Poveda-Villalón

Fig. 2: Chowlk visual notation summary.

Figure 3 shows an excerpt of the BIMERR building ontology.2 The figure
shows basic elements such as classes, class hierarchies, object properties and
datatype properties. Also, some more complex statements are represented as uni-
versal restrictions, for example between building:Building and building:Storey
over the object property bot:hasStorey. Class cardinality constrains are shown
for several datatype properties, for example the cardinality of the attribute
building:ifcIdentifier for building:Storey is exactly 1.

Even though the presented visual notation is in some cases a one to one
representation of the formalisms of the OWL language, it gives the freedom to

2 http://bimerr.iot.linkeddata.es/def/building#



Chowlk: from UML-based ontology conceptualizations to OWL 5

Fig. 3: Conceptualization example for an ontology using Chowlk.

develop lighter models. These less complex models can contain just boxes and
plains arrows, without indicating restrictions or more complicated constructs,
almost like a conceptual map, which is easier to develop and understand by non
ontology experts. For this reason, the notation allows for different alternatives
for representing most of the OWL constructs and the framework includes two
flavours of the notation that are implemented in two different templates.

The first template is a complete version containing all the building blocks
described in the visual notation. This version was designed for ontology engi-
neers who are knowledgeable about OWL. The second template is a lightweight
version containing just a subset of the blocks, such as rectangles, arrows, and
Boolean operators without more complicated constructs like restrictions. This
second version was intended for users which are not familiar with OWL. Users
can upload the templates and start making their conceptualizations by dragging
and dropping the building blocks of the template into the diagramming layout
of diagrams.net. This procedure reduces the entry barrier to start using the no-
tation and avoids visual syntax errors when constructing the conceptualizations
by providing already predefined combinations of the blocks in order to represent
the OWL constructs.



6 Serge Chávez-Feria, Raúl Garćıa-Castro, and Maŕıa Poveda-Villalón

3 The Chowlk converter

Chowlk is a web application that takes as input an ontology conceptualization
created with diagrams.net and generates the OWL implementation. The concep-
tualization is made following the Chowlk visual notation described in section 2.
The web application is available through its URL,3 and through its API.4 The
source code is shared in a GitHub repository5 under the Apache 2.0 license. The
software has a canonical citation using the DOI6 provided by its Zenodo entry.7

Figure 1 shows the modules in which the system is decomposed, namely: the
detection module, the association module, and the writing module. The input
to the system is a diagram representing the conceptual model of an ontology
in XML format. After the conversion process, the tool outputs the ontology
implementation in Turtle that can be downloaded to continue with the remaining
ontology engineering process.

It is worth mentioning that even though the workflow shown in Figure 1
has been defined within the Chowlk Framework, it can be reused to develop
converters for other visual notations, just by adapting the detection stage which
is in charge of detecting the underlying syntax of the blocks. Section 3.1 exposes
the reasons to build the converter based on diagrams.net and the rest of the
sub-sections cover in detail each of the modules in the transformation pipeline.

3.1 Selecting a diagramming tool

As already mentioned, the goal is not to produce a graphical ontology editor but
to take advantages of conceptualizations that can be developed with a variety of
diagramming tools. Indeed, the Chowlk notation is independent of the tool used
to draw the diagram shapes or symbols and provides alternatives in case the
diagramming tool does not support some symbols as the existential or universal
operators. However, in order to use the converter to generate the OWL code
from the conceptualization, diagrams.net should be used as the diagramming
tool. The main reasons for choosing diagrams.net are:

1. It is flexible enough in terms of features and drawing options, so it allows to
implement all the elements of the visual notation.

2. It supports synchronous collaborative diagram edition. In this sense, ontol-
ogists and domains experts, or other roles involved in ontology conceptual-
ization, could be visualizing and/or editing the diagrams at the same time.

3. It is able to export diagrams in a structured format, such as an XML file. Fig-
ure 4 shows an example of the nested structure generated, where on the left
side we have a very simple ontology excerpt composed by two classes and one
object property, and on the right side the XML counterpart. Additionally,

3 https://chowlk.linkeddata.es
4 https://chowlk.linkeddata.es/api
5 https://github.com/oeg-upm/Chowlk
6 https://doi.org/10.5281/zenodo.4312930
7 https://zenodo.org/record/4312930#.X9yNt9hKiUk



Chowlk: from UML-based ontology conceptualizations to OWL 7

Fig. 4: Sample XML output of diagrams.net

each child element has a sequence of attributes that helps in the identifica-
tion of each building block. Table 1 describes the fields used to describe the
children elements. Some attributes apply to all the building blocks of the
diagram such as the “id” field, while others only apply to specific shapes like
the arrow blocks that should include a “target” and a “source” field.

4. It is a web-based open source platform. This feature lowers the barrier for
its adoption, avoiding the process of having to download the software, install
it and run it locally. The open source characteristic also opens the door to
increase its functionalities whether through the extension of its source code
or by means of plugins.

Table 1: XML diagrams.net data structure.

Block at-
tribute

Block type Definition

id Classes, object properties,
datatype properties.

Unique identifier of the block in the diagram.

value Classes, object properties,
datatype properties.

Text content assigned to the block. Used to represent
the URIs of the elements of the ontology.

style Classes, object proper-
ties,datatype properties.

Allows to give style to the blocks and make a differ-
entiation between the elements of the ontology.

source Object properties Points to the block id that is connected to the source
side of an arrow.

target Object properties Points to the block id that is connected to the target
side of an arrow.



8 Serge Chávez-Feria, Raúl Garćıa-Castro, and Maŕıa Poveda-Villalón

3.2 The detection module

Once the diagram is uploaded to the system, the transformation process triggers.
The first step in the conversion procedure is performed by the detection module,
where all the building blocks of the diagram are found.

The detection of ontology elements is performed for all the building blocks
represented in the diagram that follow the Chowlk visual notation, discarding
any shape that does not correspond to the notation ones. This detection is done
by analyzing the attributes of the XML data structure mentioned in section 3.1.
Specifically, the module searches for information in the “style” attribute of chil-
dren elements to derive the type of shape it is dealing with. For instance, if the
“style” attribute contains the keyword “edge”, the module can interpret that the
shape being analyzed is of type “arrow” that could represent an object property
in the OWL language. Each element identified in the diagram populates a pre-
defined data structure, where the fields change according to the type of ontology
element. For example, in the case of an object property the data structure will
store information regarding its prefix, the URI, if it is functional or symmetric,
etc. These data structures facilitate later the querying of elements and searching
for information during the subsequent stages.

In most of the cases the type of visual blocks used in the specification has a
unique mapping to the OWL construct, like the namespace block. However, there
are other situations in which the same type of building block is used to represent
more than one OWL element. This is the case of concepts and attributes, where
both use the rectangle definition, and it is needed to identify the geometry
disposition of the blocks in the layout in order to disambiguate their meaning.
In this particular example, if the algorithm detects a rectangle, then it searches
for other rectangles above it in a close neighborhood. If they exist, the rectangle
we are analyzing represents datatype properties, otherwise it represents a class.

In the current version of the converter, the source and target of arrows in a di-
agram must be anchored to other building blocks in order to identify the relation-
ship. This characteristic in combination with the restriction that diagrams.net
does not allow connections between arrows, impedes the creation of relationships
between properties. This means that in order to represent rdfs:subPropertyOf
relations between two object properties, the diamond option specified in the vi-
sual notation to represent object properties should be used. Diamond shapes can
also be used as an optional alternative to state several other characteristics of
the properties such as symmetry, functionality, range, domain, etc. If an object
property is represented as an arrow in one part of the diagram and additional
information is provided using the diamond shape, the definition of the property
is generated by combining the information represented in both shapes.

Additionally, the converter is able to identify ontology metadata, and the
namespaces and prefixes being used in the model, thanks to specific blocks ded-
icated to this type of information. Labels to each ontology element are added
during the detection process.

Finally, the detector module also identifies any deviation from the visual
notation and returns a report diagram indicating in which part of the diagram



Chowlk: from UML-based ontology conceptualizations to OWL 9

the ontology engineer is not following the correct syntax. For instance, if the
ontology engineer attempts to instantiate a property without a prefix, or a prefix
was detected in the ontology elements that was not included in the namespace
declaration block, the module detects those errors and outputs: the id of the
block involved, the label if available, and a generic explanation of the error. This
example can be seen in Figure 5.

Fig. 5: Example of error report

3.3 The association module

The association module performs the connection between the classes, and the
object and datatype properties instantiated in the diagram.

The correspondences are established following different procedures. In the
case of associations between classes and object properties, the module checks
if the identifier of the building block representing a class and the identifier in
the “source” field of an object property is the same. For the case of association
between classes and datatype properties, the module analyzes the location of
the blocks representing them. If the datatype property block is below and close
enough to a class block, it means those attributes are intended to be used with
that class.

In a second step, the module analyzes if the object and datatype properties
have a restriction with the class at hand. The module specifically searches for
the following notation in the text of the properties: (some), (all), or (N1..N2),
which indicates existential, universal, and cardinally restrictions respectively.

If the restrictions exist, the module maintains the connections previously
created between the classes and the properties. Otherwise, the associations are
eliminated because the properties have been diagrammed in that way only to
give the potential user of the ontology an idea of how the properties are planned



10 Serge Chávez-Feria, Raúl Garćıa-Castro, and Maŕıa Poveda-Villalón

to be used. However, there is no formal restriction that states that it can only
be used with that specific class.

Finally, the output of this module is an array that contains the concepts,
objects properties and datatype properties associated through restrictions. This
will facilitate the serialization of the restrictions in the final Turtle file.

3.4 The writing module

The writing module takes all the ontological elements detected in the previous
steps and writes them one by one in an RDF file. The process starts by taking as
basis a template that already incorporates common namespaces (rdfs, owl, rdf,
xml, dcterms and vann) and their prefixes to avoid the user to indicate them.

This default list is complemented with the namespaces and prefixes found
in the metadata block. If there exist some prefixes detected on the elements of
the ontology (e.g., concepts, relations, attributes) that were not declared on the
namespace block, new namespaces invented by the tool are created automati-
cally. Afterwards, the module writes high level information about the ontology
declared in the ontology metadata block, such as title, authors, imports, etc.
This information will be written in the owl:Ontology header.

Next, the module writes the definition of the object and datatype properties.
The following information is included for both types of properties: English labels
(which are automatically extracted from the URI), if they are functional, the
domain, the range, and if they are sub-property or equivalent to another one. In
the case of object properties additional characteristics are included if they are
stated during the conceptualization: symmetric, transitive, inverse functional, or
inverse of another property.

The process is similar for writing the classes, with the difference that in
this case the module uses as input the output from the associations module.
The writing module needs such data structure to know the type of restrictions
that applies over each class with respect to the object and datatype properties.
Relationships of the type owl:disjointWith and owl:equivalentClass with
other concepts are also included. Instances and general axioms such as multiple
disjoints between several classes are also added.

Once the writing process is finished, the converter provides the ontology in
the Turtle format, and the file can be finally downloaded from the GUI of the
web application.

Additionally, if the visual notation was not followed properly, a report is
provided in the GUI of the application listing all the errors found during the
parsing process. The report includes the id of the block containing the error, the
label of the block for a rapid inspection in the diagram, and a generic explanation
of the problem.

3.5 Current limitations

The diagrams.net tool is a general purpose diagramming software, not specific
for the development of ontologies, so the user has to be very careful when con-



Chowlk: from UML-based ontology conceptualizations to OWL 11

structing the conceptualizations in order to avoid deviations from the visual
notation being used. Even though the current version of the model can generate
reports about the errors detected in model and the user can make the appropri-
ate changes in the diagram, the process of identifying the blocks in the diagram
manually can be very complex for very large conceptualizations.

Also, because diagrams.net does not allow to anchor the extremes of arrows to
other arrows, the system cannot detect the rdfs:subpropertyOf, owl:inverseOf
and owl:equivalentOf relationships. For that we need to use the diamond op-
tions of the Chowlk visual notation. For instance, to express that the object
property “hasSpace” has a relationship of type owl:inverseOf with the prop-
erty “isSpaceOf” we need to use the diamond shapes for the converter to be able
to detect this kind of construct.

4 Validation

In the following section we provide a series of examples that prove the usage
of the tool. Additionally, we verified the correctness of the results obtained by
the converter by transforming the visual OWL constructs listed in the visual
notation. Because of the simplicity of the tool, we do not include user experience
evaluation in this first version, but it is something that we plan to do for the
next iterations.

4.1 Adoption and use

The service has been adopted in different projects from several institutions. For
instance, Chowlk is being used as part of the ontology development pipeline in
different H2020 European projects, such as BIMERR,8 and COGITO,9 within
the research lab developing Chowlk, but also by external teams, for example in
the BIM4EEB10 and CosWot ANR projects.11

Additionally, the system is being used to support the development of on-
tologies in different domains such as agriculture,12 public transport [14], time,13

ethics,14 material science,15 and ICT infraestructure [3]. Furthermore, some on-
tologies developed by international communities such as the W3C16 has also
being implemented using Chowlk, such as the WoT discovery ontology.17

8 https://bimerr.iot.linkeddata.es/
9 https://cogito.iot.linkeddata.es/

10 https://digitalconstruction.github.io/v/0.5/index.html
11 https://coswot.gitlab.io/
12 http://www.elzeard.co/ontologies/c3po/plant#
13 https://github.com/mnavasloro/ft3/blob/04c65c2b2ed2bd57f9ac6cfb32b7f4ebfda1f4c4/

ft3.owl
14 https://krnlet.github.io/#
15 https://github.com/Mat-O-Lab/MSEO
16 https://www.w3.org/
17 https://github.com/w3c/wot-discovery/blob/24b2141e8e0cb74abd24cead0b4bbffb672e24c6/

context/discovery-ontology.ttl



12 Serge Chávez-Feria, Raúl Garćıa-Castro, and Maŕıa Poveda-Villalón

Finally, the usage of the tool can be demonstrated by the issues, pull requests
and forks made to the Github of the project. This demonstrate that Chowlk is
being used not only to develop ontologies, but also being integrated in other
ontology development softwares.18

4.2 Validation Tests

The service has been tested against a set of 49 diagrams, where all the results
obtained were valid ontologies. Each diagram contains a set of building blocks
representing the OWL constructs defined in the Chowlk visual notation. The
diagrams constructed with their corresponding OWL ontologies are available in
the GitHub repository of the project19 for its verification. Figure 6 shows an
example of an input diagram and the ontology generated by the converter.

Fig. 6: Test Conversion Example.

As it was mentioned in section 4.4, since it is not possible for the system to de-
tect the owl:inverseOf, owl:equivalentProperty and rdfs:subPropertyOf

axioms between object properties when they are represented using arrows, we
tested those axioms representing the object properties with the diamond shapes.

18 https://gitlab.com/kupferdigital/ontoflow
19 https://github.com/oeg-upm/Chowlk/tree/webservice/tests/inputs



Chowlk: from UML-based ontology conceptualizations to OWL 13

5 Related work

Several approaches have been proposed in the recent years with respect to visual
ontology edition tools. The work developed in [5] presents a good review of the
state of the art regarding tools with edition and visualization capabilities. From
the spectrum of tools analyzed, only six include the visual edition of ontologies
as a feature. It is important to remark that the following review only considers
tools that are free for its usage.

On the one hand, there is a set of applications that are implemented as a
web service. WebVOWL [16] is an application that has as a principal feature the
visualization of OWL ontologies, which are displayed following the VOWL vi-
sual notation that has a graph representation. Among other capabilities it allows
the customization of the visualization and the modification of the ontology by
directly manipulating the elements of the graph. On the same line, OWLGrEd
[2] is a framework that offers visualization capabilities following an UML based
notation. The tool allows the visual edition of ontologies but only in its desk-
top version. Even though, the graphical edition of the ontologies is possible in
both applications, neither of them allow collaborative work. Graffoo20 is an open
source tool that can be used to represent OWL ontologies as easy-to-understand
diagrams. Originally, it was developed as a standard library for the yEd dia-
gram editor including a set of pallets to create ontology conceptualizations and
afterwards using the Ditto21 web service to generate the OWL implementation.
Recently, a library for diagrams.net was created to develop ontology conceptu-
alization using the Graffoo visual notations; however, in this case the conversion
service is not available.

On the other hand, there is a set of applications that require the local instal-
lation of software. The following tools are described based on their publications
because there is no evidence of their availability. CMap Ontology Editor [8] is
a set of tools that allows the creation and visualization of ontologies as concep-
tual maps [12], which are general artifacts that serve for the representation of
any kind of knowledge. Ontotrack [10] is a standalone application that supports
graph based and hierarchical representations of ontologies. It includes instant
reasoning capabilities that provide instant feedback about the modeling deci-
sions made by the user. Triple20 [15] is a manipulation and visualization tool
developed using Prolog. Some of its characteristics include the representation of
the ontology following a graph based and hierarchical view and the ability to
handle large ontologies because all the data is stored in RAM memory. Finally,
GrOWL [9] is a standalone Java application that, apart from the basic visual-
ization and edition features, also makes use of shape, color and shade to encode
properties in the nodes of the graph.

One common characteristic among the tools described previously is that all
require the learning of a new development environment, the local installation of
the software, or do not allow collaborative work.

20 https://essepuntato.it/graffoo/
21 https://essepuntato.it/ditto/



14 Serge Chávez-Feria, Raúl Garćıa-Castro, and Maŕıa Poveda-Villalón

The Chowlk converter eliminates the need for software installation by lever-
aging on existing popular diagramming tools that already provide collaborative
edition features to generate the ontology conceptualizations. It could also be
integrated with third party software. In addition, the proposed framework and
converter are based on UML notation as it is commonly used in software engi-
neering, and it is familiar to software engineers.

6 Conclusions and future work

This paper presents a system, Chowlk, to ease the ontology development process
by leveraging the conceptualization activity outputs in order to transform the
obtained diagrams into OWL code. Chowlk is implemented as a web application
that allows the uploading of the diagram as an XML file and outputs the ontology
in RDF/XML and Turtle formats speeding up the ontology developments.

The system was tested using a unit-test procedure with all the OWL con-
structs defined by the Chowlk visual notation, and also using it to generate the
ontologies of the BIMERR ontology network.

We will explore the support for other visual notations for a broader adoption
and testing of the tool. Additionally, further research should be carried out in
order to support the updating of the conceptualizations. That is, how for a
given ontology created by Chowlk, and then modified by an editor (Protégé),
the changes can be appropriately represented in the diagram. The support for
other standard formats such as SVG is also something to be explored in the next
version. This could allow the converter to be independent of the diagramming
tool to be used.

Finally, the sustainability plan for the system includes its continue use and
evolution as part of current and future research projects and as part of the
group ontology engineering tools suite roadmap. Some foreseen interactions exist
between Chowlk and OnToology [1], by integrating the XML file as a resource
in GitHub repositories from where OnToology can trigger Chowlk to generate
the OWL code; and incorporating the pitfalls detection from OOPS! [13] within
the conceptualization phase by the diagrams.net Chowlk plugin.

References

1. Alobaid, A., Garijo, D., Poveda-Villalón, M., Santana-Perez, I., Fernández-
Izquierdo, A., Corcho, O.: Automating ontology engineering support activities with
ontoology. Journal of Web Semantics (2018)

2. Barzdins, J., Barzdins, G., Cerans, K., Liepins, R., Sprogis, A.: UML style graphical
notation and editor for OWL 2. In: Perspectives in Business Informatics Research -
9th International Conference, BIR 2010, Rostock Germany, September 29-October
1, 2010. Proceedings. Lecture Notes in Business Information Processing, vol. 64,
pp. 102–114. Springer (2010). https://doi.org/10.1007/978-3-642-16101-8 9

3. Corcho, O., Chaves-Fraga, D., Toledo, J., Arenas-Guerrero, J., Badenes-Olmedo,
C., Wang, M., Peng, H., Burret, N., Mora, J., Zhang, P.: A high-level ontology
network for ict infrastructures. In The Semantic Web-ISWC (sep 2021)



Chowlk: from UML-based ontology conceptualizations to OWL 15

4. Dean, M., Schreiber, A., Bechofer, S., van Harmelen, F., Hendler, J., Horrocks,
I., MacGuinness, D., Patel-Schneider, P., Stein, L.: Owl web ontology language
reference. w3c recommendation, world wide web consortium (2004), latest version:
http://www.w3.org/TR/owl-ref/

5. Dudás, M., Lohmann, S., Svátek, V., Pavlov, D.: Ontology visualization methods
and tools: a survey of the state of the art. The Knowledge Engineering Review
p. 33 (2018)

6. Garijo, D., Poveda-Villalón, M.: Best practices for implementing FAIR vocabularies
and ontologies on the Web (Nov 2020). https://doi.org/10.3233/SSW200034

7. Haase, P., Brockmans, S., Palma, R., Euzenat, J., d’Aquin, M.: D1.1.2 updated
version of the networked ontology model. Tech. rep., Universität Karlsruhe (2009),
NeOn Project. http://www. neon-project. org

8. Hayes, P., Eskridge, T., Saavedra, R., Reichherzer, T., Mehrotra, M., Bobrovnikoff,
D.: Collaborative knowledge capture in ontologies. In Proceedings of the 3rd In-
ternational Conference on Knowledge Capture (2005)

9. Krivov, S., Williams, R., Villa, F.: Ontotrack: a semantic approach for ontology
authoring. GrOWL: A tool for visualization and editing of OWL ontologies (2007)

10. Liebig, T., Noppens, O.: Ontotrack: a semantic approach for ontology authoring.
Web Semantics: Science, Services and Agents on the World Wide Web (2005)

11. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (2015). https://doi.org/10.1145/2757001.2757003, https://doi.org/

10.1145/2757001.2757003

12. Novak, J., Cañas, A.: The theory underlying concept maps and how to construct
and use them. Tech. rep. (2006), technical Report IHMC CmapTools 2006-01,
Institute for Human and Machine Cognition (IHMC)

13. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: Oops! (ontology
pitfall scanner!): An on-line tool for ontology evaluation. Int. J. Semantic Web
Inf. Syst. 10(2), 7–34 (2014). https://doi.org/10.4018/ijswis.2014040102, https:
//doi.org/10.4018/ijswis.2014040102

14. Ruckhaus, E., Anton-Bravo, A., Scrocca, M., Corcho, O.: Applying the lot method-
ology to a public bus transport ontology aligned with transmodel: Challenges
and results (nov 2021). https://doi.org/10.3233/SW-210451, https://content.

iospress.com/articles/semantic-web/sw210451

15. Wielemaker, J., Schreiber, G., Wielinga, B.: Using triples for implementation: the
triple20 ontology manipulation tool. In The Semantic Web-ISWC (2015)

16. Wiens, V., Lohmann, S., Auer, S.: Webvowl editor: Device-independent visual on-
tology modeling. International Semantic Web Conference (2018)


