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Abstract. The XSD binary floating point datatypes are regularly used
for precise numeric values in RDF. However, the use of these datatypes
for knowledge representation can systematically impair the quality of
data and, compared to the XSD decimal datatype, increases the proba-
bility of data processing producing false results. We argue why in most
cases the XSD decimal datatype is better suited to represent numeric
values in RDF. A survey of the actual usage of datatypes on the relevant
subset of the December 2020 Web Data Commons dataset, containing
19 453 060 341 literals from real web data, substantiates the practical
relevancy of the described problem: 29 %–68 % of binary floating point
values are distorted due to the datatype.
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1 Introduction

The Resource Description Framework (RDF) is the fundamental building block
of knowledge graphs and the Semantic Web. In RDF, values are represented as
literals. A literal consists of a lexical form, a datatype, and possibly a language
tag. The RDF standard [1] recommends to use XML Schema Definition Language
(XSD) built-in datatypes [2]. For numeric values, this includes the primitive
types decimal, double and float as well as all variations of integer1 which are
derived from decimal.

The datatype decimal allows the representation of numbers with arbitrary
precision, whereas the datatypes float and double allow the representation of bi-
nary floating point values of limited range and precision [2]. However, in practice,
the binary floating point datatypes are regularly used for precise numeric values,
although the datatype cannot accurately represent these values. For example,
out of nine unit ontologies selected in a comparison study [3], five ontologies
(OM 1, OM 2, QU, QUDT, SWEET) used XSD binary floating point values and
only two ontologies or knowledge graphs (OBOE, Wikidata) used xsd:decimal

1integer, long, int, short, byte, nonNegativeInteger, positiveInteger, unsignedLong,
unsignedInt, unsignedShort, unsignedByte, nonPositiveInteger, and negativeInteger.
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values for unit conversion factors. Even a popular ontology guideline [4] and a
World Wide Web Consortium (W3C) working group note [5] use binary floating
point datatypes for precise numeric values in examples.

In general, binary floating point numbers are meant to approximate decimal
values in a fixed length binary representation to limit memory consumption and
increase computation speed. In RDF, however, binary floating point numbers are
defined to represent the exact value of the binary representation: Binary floating
point values do not approximate typed decimals, as in programming languages,
but typed decimals are abbreviations for exact binary floating point values. This
causes ambiguity about the intended meaning of numeric values. We show that
29 %–68 % of the floating point values in real web data are distorted due to the
datatype. With regard to the growing use of RDF for the representation of data,
including research data, this ambiguity is concerning.

Further, the use of binary floating point datatypes for precise numeric values
regularly causes rounding errors in the values actually represented, compared
to typed values provided as decimals. Subsequently, error accumulation may
significantly falsify the result of processing these values. Disasters, such as the
Patriot Missile Failure [6], which resulted in 28 deaths, illustrate the potential
impact of accumulated errors in real world applications. The increasing relevance
of knowledge graphs for real-world applications calls for general awareness of
these issues in the Semantic Web community.

In this paper, we discuss advantages and disadvantages of different numeric
datatypes. We demonstrate the practical relevance of the outlined problem with
a survey of the actual usage of datatypes on the relevant subset of the December
2020 Web Data Commons dataset, containing 19 453 060 341 literals from real
web data. We aim to raise awareness of the implications of datatype selection in
RDF and to enable a more informed choice in the future. This work is structured
as follows: In Section 2, we give an overview of relevant standards and related
work, followed by a comparison of the properties of the binary floating point and
decimal datatypes in Section 3. In Section 4, we discuss the implications of the
datatype properties in different use cases. An approach for automatic problem
detection is outlined in Section 5. In Section 6, we present a survey on the use of
datatypes in the World Wide Web that demonstrates the practical relevance of
the outlined problem. Finally, we indicate approaches for the general mitigation
of the problem in Section 7.

2 Background

Each datatype in RDF consists of a lexical space, a value space, and a lexical-
to-value mapping. This is compatible with datatypes in XSD [1].

Value space: the set of values for a datatype [1,2].
Lexical space: the prescribed set of strings, which the lexical mapping for a

datatype maps to values of that datatype. The members of the lexical space
are lexical representations (lexical forms) of the values to which they
are mapped [1,2].
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Lexical mapping (lexical-to-value mapping): a prescribed relation which
maps from the lexical space of a datatype into its value space [1,2].

RDF reuses the XSD datatypes with only a few exceptions and additions
of non-numeric datatypes [1]. For non-integer numbers, XSD provides the data-
types decimal, float and double. The XSD datatype decimal (xsd:decimal)
represents a subset of the real numbers [2].

Value space of xsd:decimal: the set of numbers that can be obtained by di-
viding an integer by a non-negative power of ten: i

10n with i ∈ Z, n ∈ N0,
precision is not reflected [2].

Lexical space of xsd:decimal: the set of all decimal numbers with or without
a decimal point [2].

Lexical mapping of xsd:decimal: set i according to the decimal digits of the
lexical representation and the leading sign, and set n according to the posi-
tion of the period or 0, if the period is omitted. If the sign is omitted,“+” is
assumed [2].

The XSD datatype float (xsd:float) is aligned with the IEEE 32-bit binary
floating point datatype [7]2, the XSD datatype double (xsd:double) is aligned
to the IEEE 64-bit binary floating point datatype [7]. Both represent subsets of
the rational numbers. They only differ in their three defining constants [2].

Value space of xsd:float (xsd:double): the set of the special values pos-
itiveZero, negativeZero, positiveInfinity, negativeInfinity, and notANumber
and the numbers that can be obtained by multiplying an integer m whose
absolute value is less than 224 (double: 253) with a power of two whose ex-
ponent e is an integer between −149 (double: −1074) and 104 (double: 971):
m · 2e [2].

Lexical space of xsd:float (xsd:double): the set of all decimal numbers
with or without a decimal point, numbers in exponential notation, and the
literals INF, +INF, -INF, and NaN [2].

Lexical mapping of xsd:float (xsd:double): set either the according nu-
meric value (including rounding, if necessary), or the according special value.
An implementation might choose between different rounding variants that
satisfy the requirements of the IEEE specification.

Numbers with a fractional part of infinite length, like the rational number
1
3 = 0.3̄ or the irrational number

√
2 = 1.4142 . . ., are not in the value space of

xsd:float or xsd:double, as a number of finite length multiplied or divided by
two is always a number of finite length again. Consequently, a finite decimal with
sufficient precision can exactly represent every possible numeric value or lexical
representation of an xsd:float or xsd:double, except of the special values
positiveInfinity, negativeInfinity, and notANumber. In contrast, a finite binary
floating point value can not exactly represent every possible decimal value.

2As the XSD recommendation refers to IEEE 754-2008 version of the standard, we
do not refer to the subsequent IEEE 754-2019 version.
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Some serialization or query languages for RDF provide a shorthand syntax
for numeric literals without explicit datatype specification. In Turtle, TriG and
SPARQL a number without fraction is an xsd:integer, a number with fraction
is an xsd:decimal, and a number in exponential notation is an xsd:double

[8,9,10]. In JSON-LD a number without fractions is an xsd:integer and a
number with fraction is an xsd:double, to align with the common interpreta-
tion of numbers in JSON [11]. However, this is not necessary to comply with the
JSON specifications [12,13]. The serialization languages RDF/XML, N-Triples,
N-Quads, and RDFa do not provide a shorthand syntax for numeric literals
[14,15,16,17]. Other languages for machine-readable annotation of HTML, which
are regularly mapped to RDF, i.e. Microformats3, and Microdata4, do not in-
corporate explicit datatypes.

In addition to the core XSD datatypes, a W3C working group note intro-
duces the precisionDecimal datatype [18]. It is aligned to the IEEE decimal
floating-point datatypes [7] and represents a subset of real numbers. It retains
precision and permits the special values positiveZero, negativeZero, positiveInfin-
ity, negativeInfinity, and notANumber. Further, it supports exponential notation.
The precision and exponent values of the precisionDecimal datatype are un-
bounded, but can be restricted in derived datatypes to comply with an actual
IEEE decimal floating-point datatype. However, even though the RDF standard
permits the use of precisionDecimal, it does not demand its support in com-
pliant implementations [1]. Therefore, RDF frameworks can not be expected to
support precisionDecimal.

Another W3C working group note addresses the selection of proper numeric
datatypes [5]. It identified three relevant use cases of numeric values: count,
measurement, and constant. According to the note, the appropriate datatypes
are (derived datatypes of) xsd:integer for counts, xsd:float or xsd:double

for measurements, and xsd:decimal for constants.

The common vocabulary schema.org5 defines the alternative numeric data-
types schema:Integer and schema:Float and their super datatype
schema:Number. A usage note restricts the lexical space of schema:Number to
the digits 0 to 9 and at most one full stop. No further restrictions of the lexical
or value space are made. schema:Number is directly in the range of 91 properties
and schema:Integer is directly in the range of 47 properties. schema:Float is
not directly in the range of any property.

The digital representation or computation of numerical values can cause nu-
merical problems: An overflow error occurs, if a represented value exceeds the
maximum positive or negative value in the value space of a datatype [19]. An
underflow error occurs, if a represented value is smaller than the minimum pos-
itive or negative value different from zero in the value space of a datatype [19].
A rounding error occurs, if a represented value is not in the value space of a
datatype. It is then represented by a nearby value in the value space that is de-

3https://microformats.org
4https://html.spec.whatwg.org/multipage/microdata.html
5http://schema.org, current version 13.0

https://microformats.org
https://html.spec.whatwg.org/multipage/microdata.html
http://schema.org
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Fig. 1. Possible processing paths of numeric literals depending on their datatype.

termined by a rounding scheme [19]. A cancellation is caused by the subtraction
of nearly equal values and eliminates leading accurate digits. This will expose
errors in the input values of the subtraction [19]. Error accumulation is the in-
sidious growth of errors due to the use of a numerically instable sequence of
operations [19].

3 Properties of Binary Floating Point and Decimal
Datatypes in RDF

Binary floating point and decimal datatypes in the context of RDF have indi-
vidual properties, which make them more or less suitable for specific use cases:

xsd:float and xsd:double permit the use of positive and negative infi-
nite values. xsd:decimal supports neither positive nor negative infinite values.

xsd:float and xsd:double permit the exponential notation. Especially
in the case of numbers with many leading or trailing zeros, this is more conve-
nient and less error-prone to read or write for humans. xsd:decimal does not
permit the exponential notation. There is no actual reason for this limitation.
For example, Wikibase6 also accepts exponential notation for xsd:decimal.7

The XML Schema Working Group decided against allowing exponential nota-
tion for xsd:decimal, as the requirement to have a decimal datatype permitting
exponential notation was already met by precisionDecimal [20], which, how-
ever, has been dropped in the later process of the XSD standardization [21]. To
our knowledge, this has not been considered during the RDF standardization.

Figure 1 presents the possible processing paths of numeric literals depending
on their datatype. It shows that only decimal lexical representations can be

6https://wikiba.se/, SPARQL endpoint example: https://query.wikidata.org
7Example: SELECT ("1e-9"^^<http://www.w3.org/2001/XMLSchema#decimal> AS ?d) WHERE {}

https://wikiba.se/
https://query.wikidata.org
https://query.wikidata.org/#SELECT%20%28%221e-9%22%5E%5E%3Chttp://www.w3.org/2001/XMLSchema%23decimal%3E%20AS%20%3Fd%29%20WHERE%20%7B%7D
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used to produce exact result without custom operations. 1© to 8© denote the
mapping operations, cast operations, and calculation operations on values of
different datatypes and will be used as references in the following explanations.

The value spaces of xsd:float and xsd:double only provide partial cov-
erage of the lexical space. Therefore, the lexical mapping ( 3©) might require
rounding to a possible binary representation and the actual value might slightly
differ from the lexical representation. For example, xsd:float has no exact
binary representation of 0.1 and actually maps it to a slightly higher binary rep-
resentation of 0.100 000 001 4. . . , if using the default roundTiesToEven rounding
scheme [7]. Depending on the used RDF framework, it might be possible to
preserve the exact value of the lexical representation by implementing a custom
mapping to decimal ( 2©). However, this causes additional development effort and
introduces non standard compliant behavior. The value space of xsd:decimal

covers all values in the lexical space. Therefore, the lexical mapping ( 1©) always
provides the exact numeric value described in the lexical representation without
any rounding. All three datatypes, xsd:float, xsd:double, and xsd:decimal,
do not cover the precision reflected by the lexical representation. For example, lit-
erals with the lexical representations 0.5 and 0.50 are considered equal although
their lexical representations reflect different precision. The only discussed data-
type that preserves the reflected precision is precisionDecimal.

The accuracy of calculations based on xsd:float or xsd:double liter-
als ( 7©) is limited, as a properly implemented RDF framework will use binary
floating point arithmetic by default. For example, this happens during the ex-
ecution of SPARQL queries that include arithmetic functions or aggregations.
Therefore, the calculations might be affected by various numeric problems, i.e.
underflow errors, overflow errors, rounding errors, cancellation, and error accu-
mulation. Calculations based on xsd:decimal literals ( 6©) will by default use a
decimal arithmetic with arbitrary precision. Thus, they might only be affected by
rounding errors in case of (intermediate) results with a fractional part of infinite
length, as well as accumulations of these rounding errors. This different behavior
is demonstrated in Figure 2. Depending on the used RDF framework, it might
be possible to cast between the datatypes ( 4© and 5©). However, a value cast
from binary floating point to decimal ( 5©) is still affected by the rounding error
of the floating point value caused by the lexical mapping. Subsequent calcula-
tions ( 8©) will still result in approximate results only. In contrast, the results
of calculations based on a value cast from decimal to floating point ( 4©) and
based on an initial floating point value ( 3©) do not differ, if the same rounding
method is used. The SPARQL query in Figure 2 and the according result pro-
vided by Wikibase6 demonstrate differing numerical problems of the datatypes.
Other SPARQL endpoints, i.e. Virtuoso 8.38 and Apache Fuseki 5.16.09, provide
similar results.

8https://virtuoso.openlinksw.com/
9https://jena.apache.org/

https://virtuoso.openlinksw.com/
https://jena.apache.org/
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PREFIX xsd: <http ://www.w3.org /2001/ XMLSchema#>
SELECT ?datatype

(xsd:decimal(STRDT("0.1", ?datatype)) AS ?rounded)
(xsd:decimal(STRDT("1", ?datatype) / STRDT("3", ?datatype)) AS

?roundedInfinit)
(xsd:decimal(STRDT("1.0000001", ?datatype) - STRDT("1.0000000",

?datatype)) AS ?cancellation)
(STRDT("1000000000000000000000000000000000000000", ?datatype) * STRDT("1",

?datatype) AS ?overflow)
(STRDT("0.0000000000000000000000000000000000000000000001", ?datatype) *

STRDT("1", ?datatype) AS ?underflow)
WHERE {VALUES ?datatype {xsd:float xsd:decimal }}

datatype xsd:float xsd:decimal
rounded 0.10000000149011612 0.1
roundedInfinit 0.3333333432674408 0.33333333333333333333
cancellation 0.00000011920928955078125 0.0000001
overflow Infinity 1000000000000000000000000000000000000000

underflow 0.0 0.0000000000000000000000000000000000000000000001

Fig. 2. Top: A SPARQL query that demonstrates differing numerical problems of
the datatypes xsd:float and xsd:decimal. Bottom: The corresponding query output
(transformed), as on http://query.wikidata.org.

4 Implications for the Selection of Numeric Datatypes

The traditional use case of RDF is knowledge representation. The XSD floating
point datatypes provide two advantages for knowledge representation compared
to xsd:decimal: Firstly, the permitted representation of positive and negative
infinite might be needed in some cases. Secondly, the exponential notation eases
the representation of very large and very small values and reduces the risk of
typing errors due to missing or additional zeros. This would not be an issue in
case of proper user interface support. But popular tools, like WebProtégé10 and
Protégé Desktop10, do not help the user here. Further, projects that manipulate
their RDF documents under version control using SPARQL UPDATE queries,
custom generation scripts and manual edits do not have such a user interface at
all.

However, in most cases, knowledge concerned with numbers deals with exact
decimal numbers or intervals of decimal values. Intervals are typically described
with two exact decimal numbers, either with a minimum value and a maximum
value (e.g. [0.05, 0.15]) or a value and a measurement uncertainty (e.g. 0.1±0.05)
[22]. The binary floating point datatypes do not allow the accurate representation
of exactly known or defined numbers in many cases. In addition, they entail the
risk to fool data curators into believing that they stated the exact number, as the
lexical representation on first sight appears to be exact. This becomes even more
critical, if xsd:double was used unintentionally due to a shorthand syntax in
Turtle, TriG, SPARQL, or JSON-LD. This way, the use of binary floating point
datatypes produces ambiguity in the data: The intended meaning could be either
the actually represented number in the value space or the verbatim interpretation

10https://protege.stanford.edu/

https://query.wikidata.org/#PREFIX%20xsd%3A%20%3Chttp://www.w3.org/2001/XMLSchema%23%3E%0ASELECT%20%3Fdatatype%0A%20%20%28xsd%3Adecimal%28STRDT%28%220.1%22%2C%20%3Fdatatype%29%29%20AS%20%3Frounded%29%0A%20%20%28xsd%3Adecimal%28STRDT%28%221%22%2C%20%3Fdatatype%29%20%2F%20STRDT%28%223%22%2C%20%3Fdatatype%29%29%20AS%20%3FroundedInfinit%29%0A%20%20%28xsd%3Adecimal%28STRDT%28%221.0000001%22%2C%20%3Fdatatype%29%20-%20STRDT%28%221.0000000%22%2C%20%3Fdatatype%29%29%20AS%20%3Fcancellation%29%0A%20%20%28STRDT%28%221000000000000000000000000000000000000000%22%2C%20%3Fdatatype%29%20%2a%20STRDT%28%221%22%2C%20%3Fdatatype%29%20AS%20%3Foverflow%29%0A%20%20%28STRDT%28%220.0000000000000000000000000000000000000000000001%22%2C%20%3Fdatatype%29%20%2a%20STRDT%28%221%22%2C%20%3Fdatatype%29%20AS%20%3Funderflow%29%0D%0AWHERE%20%7BVALUES%20%3Fdatatype%20%7Bxsd%3Afloat%20xsd%3Adecimal%7D%7D
https://protege.stanford.edu/
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of the lexical representation. This ambiguity counteracts the basic ideas behind
the Semantic Web and Linked Open Data to ease understanding and reuse of
data. Therefore, binary floating point datatypes are not suitable to fulfill the
requirements for knowledge representation.

In consequence, the knowledge cannot be used for exact calculations without
programming overhead. The possible small rounding errors of binary floating
point input values might accumulate to significant errors in calculation results.
Disasters, as the Patriot Missile Failure [6], illustrate the potential impact of
accumulated errors in real world applications.

This contradicts a W3C working group note [5], stating that binary floating
point datatypes are appropriate for measurements. It provided the following
example representation of a measurement in the interval of 73.0 to 73.2:

_:w eg:value "73.1"^^xsd:float .

_:w eg:errorRange "0.1"^^xsd:float .

However, if using the default roundTiesToEven rounding scheme [7], this ex-
ample actually represents a measurement in the interval 72.999 998 472 6. . . to
73.199 998 475 6. . . , as 73.1 and 0.1 are not in the value space of xsd:float.11

In consequence, the actual represented error interval does not cover the points
between 73.199 998 475 6. . . and 73.2. A common solution for this problem is
the use of different rounding schemes for the calculation of the upper and lower
bound of the interval (outward rounding) [23]. Unfortunately, this is not provided
in current RDF frameworks and causes additional programming effort. The ex-
ample shows that also in case of measurements binary floating point datatypes
have clear disadvantages compared to xsd:decimal.

Further, the use of binary floating point values in RDF restricts the selection
of the used arithmetic for calculations, as it causes an implementation overhead
for the application of decimal arithmetic with arbitrary precision. It must be
mentioned that calculations using decimal arithmetic with arbitrary precision
probably are significantly slower, compared to calculations using binary floating
point arithmetic with limited precision. Hence, floating point calculations are
better suited for many use cases. However, in certain cases they are not. There-
fore, the selection of an arithmetic must be up to the application, not to the
input data, as applications might widely vary regarding the required accuracy
and the numerical conditioning of the underlying problem.

The same problem arises in use cases that involve the comparison of values,
like instance-based ontology matching or ontology based data validation, because
comparison values become blurred due to rounding. For example, if using the de-
fault roundTiesToEven rounding scheme, an upper bound of "0.1"^^xsd:float
in a constraint still permits a value of 0.100000001. Thus, the use of binary float-
ing point datatypes for knowledge representation can systematically impair the
quality of data and increases the probability of false results of data processing.

11Lexical mappings (roundTiesToEven rounding scheme):
73.1→ 73.099 998 474 1. . . and 0.1→ 0.100 000 001 4. . . , Interval calculations:
73.099 998 474 1. . . ± 0.100 000 001 4. . .
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In other use cases, RDF might be used for the exchange of initially binary
floating point values, as computational results or the output of analog-to-digital
converters. If the data to exchange are binary floating point values, the original
value can only contain values with an exact binary representation and corruption
of data with rounding is impossible. Thus, the use of floating point datatypes
for the exchange of computational results is reasonable.

5 Automatic Distortion Detection

The automatic detection of quality issues is key to an effective quality assurance.
Therefore, RDF editors, like Protégé10, or evaluation tools, like the OntOlogy
Pitfall Scanner! [24], would ideally warn data curators, if the use of binary float-
ing point datatypes would distort numeric values.

A simple test can be implemented by comparing the results of the default
mapping to a binary floating point value ( 3© in Figure 1) followed by a cast
to decimal ( 5© in Figure 1) and a custom mapping to a decimal value ( 2© in
Figure 1). The SPARQL query in Figure 3 demonstrates the approach.

PREFIX xsd: <http ://www.w3.org /2001/ XMLSchema#>
SELECT

(xsd:decimal (? xsdFloatValue) AS ?xsdFloatSemantic)
(? xsdDecimalValue AS ?xsdDecimalSemantic)
(xsd:decimal (? xsdFloatValue) != ?xsdDecimalValue AS ?distorted)

WHERE {
VALUES ?lexical {"1" "0.1" "0.5"}
BIND(STRDT(?lexical , xsd:float) AS ?xsdFloatValue)
BIND(STRDT(?lexical , xsd:decimal) AS ?xsdDecimalValue)

}

xsdFloatSemantic xsdDecimalSemantic distorted
0.5 0.5 false
0.10000000149011612 0.1 true
1 1 false

Fig. 3. Top: A SPARQL query that demonstrates an approach to detect number dis-
tortion. Bottom: The corresponding query output, as on http://query.wikidata.org.

6 Datatype Usage Survey

To determine the practical relevancy of the described problem, we conducted
a survey of the actual usage of datatypes. The survey is based on the Decem-
ber 2020 edition12 of the Web Data Commons dataset [25]. The Web Data
Commons dataset provides in several N-Quads files the embedded RDF data
of 1.7e9 HTML documents extracted from all 3.4e9 HTML documents contained

12http://webdatacommons.org/structureddata/#results-2020-1

https://query.wikidata.org/#PREFIX%20xsd%3A%20%3Chttp://www.w3.org/2001/XMLSchema%23%3E%0ASELECT%0A%20%20%28xsd%3Adecimal%28%3FxsdFloatValue%29%20AS%20%3FxsdFloatSemantic%29%0A%20%20%28%3FxsdDecimalValue%20AS%20%3FxsdDecimalSemantic%29%0A%20%20%28xsd%3Adecimal%28%3FxsdFloatValue%29%20%21%3D%20%3FxsdDecimalValue%20AS%20%3Fdistorted%29%0AWHERE%20%7B%0A%20%20VALUES%20%3Flexical%20%7B%221%22%20%220.1%22%20%220.5%22%7D%0A%20%20BIND%28STRDT%28%3Flexical%2C%20xsd%3Afloat%29%20AS%20%3FxsdFloatValue%29%0A%20%20BIND%28STRDT%28%3Flexical%2C%20xsd%3Adecimal%29%20AS%20%3FxsdDecimalValue%29%0A%7D
http://webdatacommons.org/structureddata/#results-2020-1
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in the September 2020 Common Crawl archive,13 a freely available web crawl
archive. We selected it because of its large size, an expected large proportion
of literals, the uniform access of the whole corpus, its heterogeneous original
sources (15e6 domains), and a good reflection of RDF usage by a wide range of
people. The December 2020 Web Data Commons dataset is divided into data ex-
tracted from embedded JSON-LD, RDFa, Microdata, and several Microformats.
We only considered data from embedded JSON-LD (7.7e8 URLs, 3.2e10 triples)
and RDFa (4.1e8 URLs, 5.9e9 triples), as Microdata and Microformats do not
incorporate explicit datatypes.

We created a Java program based on Apache Jena9 to stream and analyze
the relevant parts of the Web Data Commons dataset. The dataset replicates
malformed IRIs or literals as they appeared in the original source. To avoid
parsing failures of whole files due to single malformed statements, each line
was parsed independently and failures were logged separately. Overall, about
4.5e7 failures occurred. The main reasons for failures were malformed IRIs and
illegal character encodings. Transaction mechanisms were used to ensure the
consistency of the resulting dataset in case of temporary failures of involved
systems. Per source type, dataset file, property, and datatype we measured:

1. UnpreciseRepresentableInDouble: the number of lexicals that are in the
lexical space but not in the value space of xsd:double.

2. UnpreciseRepresentableInFloat: the number of lexicals that are in the
lexical space but not in the value space of xsd:float.

3. UsedAsDatatype: the total number of literals with the datatype.
4. UsedAsPropertyRange: the number of statements that specify the data-

type as range of the property.
5. ValidDecimalNotation: the number of lexicals that represent a number

with decimal notation and whose lexical representation is thereby in the
lexical space of xsd:decimal, xsd:float, and xsd:double.

6. ValidExponentialNotation: the number of lexicals that represent a num-
ber with exponential notation and whose lexical representation is thereby in
the lexical space of xsd:float, and xsd:double.

7. ValidInfOrNaNNotation: the number of lexicals that equals either INF,
+INF, -INF or NaN and whose lexical representation is thereby in the lexical
space of xsd:float, and xsd:double.

8. ValidIntegerNotation: the number of lexicals that represent an integer
number and whose lexical representation is thereby in the lexical space of
xsd:integer, xsd:decimal, xsd:float, and xsd:double.

Unfortunately, the lexical representation of xsd:double literals from embed-
ded JSON-LD was normalized during the creation of the Web Data Commons
dataset to always use exponential notation with one integer digit and up to 16
fractional digits.14 This is a legal transformation according to the definition of

13https://commoncrawl.org/2020/10/september-2020-crawl-archive-now-

available/
14https://github.com/jsonld-java/jsonld-java/blob/v0.13.1/core/src/

main/java/com/github/jsonldjava/core/RDFDataset.java#L673

https://commoncrawl.org/2020/10/september-2020-crawl-archive-now-available/
https://commoncrawl.org/2020/10/september-2020-crawl-archive-now-available/
https://github.com/jsonld-java/jsonld-java/blob/v0.13.1/core/src/main/java/com/github/jsonldjava/core/RDFDataset.java#L673
https://github.com/jsonld-java/jsonld-java/blob/v0.13.1/core/src/main/java/com/github/jsonldjava/core/RDFDataset.java#L673
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Table 1. The number of datatype occurrences in the Web Data Commons December
2020 dataset from RDFa and embedded JSON-LD sources (Measure 3) in absolute
numbers and relative to the total number of literals in the source type (Measure 3).
Only the top ten, as well as selected further datatypes are shown.

RDFa
Datatype Occurrences (rel)
rdf:langString 3 179 161 585 (.68)
xsd:string 1 305 371 136 (.28)
xsd:dateTime 102 987 223 (.02)
rdf:XMLLiteral 62 337 177 (.01)
xsd:integer 21 547 053 (.00)
xsd:float 1 025 753 (.00)
use:sku 729 858 (.00)
xsd:date 507 454 (.00)
xsd:boolean 348 334 (.00)
schema:Date 246 995 (.00)

xsd:decimal 8288 (.00)
xsd:double 234 (.00)
schema:Number 0 (.00)
schema:Integer 0 (.00)
schema:Float 0 (.00)

Embedded JSON-LD
Datatype Occurrences (rel)
xsd:string 11 277 500 571 (.76)
xsd:integer 2 021 243 795 (.14)
schema:Date 1 313 408 439 (.09)
xsd:double 101 959 406 (.01)
xsd:boolean 26 144 338 (.00)
schema:DateTime 25 002 464 (.00)
rdf:langString 12 934 431 (.00)
xsd:float 90 895 (.00)
xsd:dateTime 12 260 (.00)
rdf:HTML 5785 (.00)

xsd:decimal 1 (.00)
schema:Number 0 (.00)
schema:Integer 0 (.00)
schema:Float 0 (.00)

xsd:double, as the represented value is preserved. However, this limits the use
of the according Valid. . . and Unprecise. . . measures. At the same time, this
demonstrates that the use of xsd:float or xsd:double might easily cause the
loss of information due to legal transformation, if information is only reflected
in the lexical representation.

The resulting dataset consists of a CSV file containing the measurement
results (5.4e7 lines, 0.6 GiB compressed, 11.0 GiB uncompressed). The analysis
was conducted with Python scripts. The tool [26], the resulting dataset [27],
and the analysis scripts [28] are freely available for review and further use under
permissive licenses.

For the analysis, we first applied some data cleaning: Some properties and
datatypes were regularly denoted by IRIs in the http scheme as well as in the
https scheme. To enable proper aggregation, the scheme of all IRIs in the dataset
were unified to http. Further, the omission of namespace definitions in the source
websites causes the occurrence of prefixed names instead of full IRIs. All prefixes
in datatypes that occurred at least for one datatype more than 1000 times and
all prefixes in properties that occurred at least for one property more than 1000
times have been replaced with the actual namespace, if we found a resource
with a matching local name and matching default vocabulary prefix during a
web search or in other used properties or datatypes. Rarer prefixes have not
been replaced because of the high effort, the susceptibility to errors caused by
ambiguity, and the lack of significance for the results. Further, we did not clean
other kinds of typos like missing or duplicated # or / after the namespace, as
these errors could also not easily be fixed by applications with, e.g., a maintained
list of widely used prefixes.
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Table 2. The number of property occurrences with XSD or schema.org numerical data-
types in the Web Data Commons December 2020 dataset from RDFa and embedded
JSON-LD sources (Measure 3) in absolute numbers and relative to the total number
of numeric literals in the source type (Measure 3). Only the top ten are shown.

RDFa
Property Occurrences (rel)
sioc:num replies 21 391 187 (.95)
gr:hasCurrencyValue 525 491 (.02)
gr:hasMinValue 137 018 (.01)
gr:amountOfThisGood 94 978 (.00)
gr:hasMaxValue 52 772 (.00)
vcard:latitude 49 428 (.00)
vcard:longitude 49 428 (.00)
gr:hasValue 25 800 (.00)
dv:count 24 672 (.00)
dv:price 23 936 (.00)

Embedded JSON-LD
Property Occurrences (rel)
schema:position 893 910 601 (.42)
schema:width 448 036 253 (.21)
schema:height 446 308 779 (.21)
schema:price 71 045 655 (.03)
schema:commentCount 65 723 049 (.03)
schema:ratingValue 26 261 677 (.01)
schema:longitude 17 096 852 (.01)
schema:latitude 17 093 196 (.01)
schema:bestRating 16 333 042 (.01)
schema:userInteractionCount 13 347 182 (.01)

Overall, we processed 14 778 325 375 literals from embedded JSON-LD and
4 674 734 966 literals from RDFa. Table 1 shows the number of occurrences of the
most frequent datatypes.15 Table 2 shows the most frequently used properties
that occurred with numerical datatypes from XSD or schema.org. Although the
use of the schema.org numeric datatypes instead of XSD numeric datatypes is
expected by the definition of many schema.org properties, including widely used
properties, like schema:position or schema:price, we found zero occurrences
of schema.org numeric datatypes. The most probable reason is the existence
of shorthand syntaxes for XSD numeric datatypes. In contrast, the usage of
schema.org temporal datatypes schema:Date and schema:DateTime in JSON-
LD exceeds the usage of XSD temporal datatypes by orders of magnitude. This
emphasizes the importance of shorthand syntaxes for the choice of datatypes.

As shown in Table 1, the occurrences of xsd:float in RDFa and xsd:double

in embedded JSON-LD surpass the occurrences of xsd:decimal by orders of
magnitude. Remarkably, we did find only one single occurrence16 of xsd:decimal
among 14 778 325 375 literals from valid triples in embedded JSON-LD sources in
the whole Web Data Commons December 2020 dataset. Table 3 shows properties
that most frequently occurred with xsd:float in RDFa and with xsd:double in
embedded JSON-LD. We manually classified the top ten properties using their
definitions, if found, and the local names. Based on these figures, at least 62 % for
xsd:float in RDFa and 54 % for xsd:double in embedded JSON-LD represent
(monetary) amounts, position numbers or single rating values (later refereed
to as T10NIFP literals), which are not initially binary floating point values. At
least 33 % for xsd:float in RDFa and 35 % for xsd:double in embedded JSON-

15Prefixes used for results presentation: dcterms: http://purl.org/dc/terms/,
dv: http://rdf.data-vocabulary.org/#, gr: http://purl.org/goodrelations/v1#,
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#, rev: http://purl.org/stuff/rev#,
schema: http://schema.org/, use: http://search.yahoo.com/searchmonkey-datatype/use/,
vcard: http://www.w3.org/2006/vcard/ns#, xsd: http://www.w3.org/2001/XMLSchema#

16https://web.archive.org/web/20200919100939/https://open.nrw/dataset/

telefonverzeichnis-alphabetisch-oktober-2019-odp

https://web.archive.org/web/20200919100939/https://open.nrw/dataset/telefonverzeichnis-alphabetisch-oktober-2019-odp
https://web.archive.org/web/20200919100939/https://open.nrw/dataset/telefonverzeichnis-alphabetisch-oktober-2019-odp
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Table 3. The number of property occurrences with xsd:float in RDFa and with
xsd:double in embedded JSON-LD in the Web Data Commons December 2020 dataset
(Measure 3) in absolute numbers and relative to the total number of literals with the
same datatype in the same source type (Measure 3). Only the top ten are shown.

xsd:float in RDFa
Property Occurrences (rel)
gr:hasCurrencyValue 516 256 (.50)
gr:hasMinValue 134 954 (.13)
gr:amountOfThisGood 94 978 (.09)
gr:hasMaxValue 52 772 (.05)
vcard:latitude 49 428 (.05)
vcard:longitude 49 428 (.05)
gr:hasValue 25 800 (.03)
dv:price 23 086 (.02)
dv:average 21 038 (.02)
rev:rating 20 970 (.02)

xsd:double in Embedded JSON-LD
Property Occurrences (rel)
schema:price 49 740 982 (.49)
schema:longitude 17 055 600 (.17)
schema:latitude 17 053 362 (.17)
schema:ratingValue 9 928 412 (.10)
schema:lowPrice 2 240 110 (.02)
schema:highPrice 1 840 080 (.02)
schema:value 1 776 255 (.02)
schema:worstRating 311 374 (.00)
schema:position 240 577 (.00)
schema:minPrice 197 850 (.00)

LD represent geolocation values, arbitrary quantity values or aggregated values,
which might but do not need to origin from initially binary floating point values.
rev:rating and schema:ratingValue cannot be assigned unambiguously to
these categories. This shows that binary floating point numbers are regularly
used for not initially binary floating point values.

As expected, because embedded RDF is not the proper place for vocabulary
definitions, we found only few cases of property range definitions (Measure 4).
They are limited to 54 unique property-datatype-pairs with two to 153 occur-
rences and for properties from only five different namespaces. This does not allow
to draw further conclusions.

Table 4 shows the number of occurrences of different notations. Except for
xsd:double in embedded JSON-LD, which is affected by normalization, expo-
nential notation is only little used in the binary floating point datatypes. Special
values occurred only in even more rare cases. From that, we conclude that the
notation or needed special values are not the crucial consideration behind using
binary floating point datatypes.

The number of lexical representations that are not precisely representable in
binary floating point datatypes is presented in Table 5. 33 % of the represented
xsd:float values in RDFa and 24 % in embedded JSON-LD differ from lexical
representations. In embedded JSON-LD the initial lexical representation of 69 %
of the xsd:double values must either have contained more then 17 significant
digits or already been differing from the represented value. Referring to the
most common properties used with xsd:double in embedded JSON-LD, shown
in Table 3, the frequent occurrence of values with more then 17 significant digits
is implausible. All together, this shows that 29 %–68 % of the values with binary
floating point datatype in real web data are distorted due to the datatype.17

17
∑

T10NIFP literals Measures 1 & 2∑
xsd:double,xsd:float literals Measure 3

≈ 0.29,
∑

xsd:double,xsd:float literals Measures 1 & 2∑
xsd:double,xsd:float literals Measure 3

≈ 0.68
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Table 4. The number of numeric notations occurrences in the lexical representation
of literals per numeric datatype in the Web Data Commons December 2020 dataset
(Measures 5, 6, 7, 8) in absolute numbers and relative to the total number of literals
with the same datatype (Measure 3). The notation of xsd:double in embedded JSON-
LD was normalized during the dataset generation.

Embedded JSON-LD
Notation

Datatype Integer Decimal Exponential Inf / NaN
xsd:decimal 0 (.00) 1 ( 1) 0 (.00) 0 (.0)
xsd:double 0 (.00) 0 (.00) 101 959 382 ( 1) 24 (.0)
xsd:float 35 951 (.40) 24 837 (.27) 4252 (.05) 0 (.0)
xsd:integer 2 021 243 613 ( 1) 0 (.00) 0 (.00) 0 (.0)
xsd:long 36 ( 1) 0 (.00) 0 (.00) 0 (.0)

RDFa
Notation

Datatype Integer Decimal Exponential Inf / NaN
xsd:decimal 89 (.01) 7349 (.89) 0 (.00) 0 (.0)
xsd:double 26 (.11) 208 (.89) 0 (.00) 0 (.0)
xsd:float 353 851 (.34) 643 206 (.63) 0 (.00) 4 (.0)
xsd:int 16 751 (.86) 0 (.00) 0 (.00) 0 (.0)
xsd:integer 21 507 446 ( 1) 38 (.00) 0 (.00) 0 (.0)
xsd:nonNegativeInteger 585 ( 1) 0 (.00) 0 (.00) 0 (.0)
xsd:positiveInteger 6 ( 1) 0 (.00) 0 (.00) 0 (.0)

7 Conclusion

Binary floating point numbers are meant to approximate decimal values to re-
duce memory consumption and increase computation speed. However, in RDF,
decimal representations are used to approximate binary floating point numbers.
This way, the use of XSD binary floating point datatypes in RDF can sys-
tematically impair the quality of data and produces ambiguity in represented
knowledge. Our survey reveals that a considerable proportion of real web data is
distorted due to the datatype. Further, its use restricts the choice of the arith-
metic in standards compliant implementations and can falsify the results of data
processing. This can cause serious impacts in real world applications.

As a second outcome, our survey indicates that shorthand syntaxes for literals
are a major cause for the choice of inappropriate datatypes. We conclude that the
datatypes and shorthand syntaxes in current RDF related standards encourage
the distortion of numeric values. We recommend an overhaul of relevant parts
of the standards to make RDF well suited for numeric data.

A radical solution that requires no update of existing data would be the
deprecation and replacement of xsd:float and xsd:double with an extended
mandatory xsd:decimal datatype in RDF. The extended xsd:decimal data-
type should additionally permit exponential notation and the special values pos-
itiveInfinity, negativeInfinity, and notANumber to cover the whole lexical space
and value space of xsd:float and xsd:double. We recommend to declare it as
default datatype in the different serialization and query languages for numbers
in decimal and exponential notation. It should also be used for interpretation
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Table 5. The number of lexical representation occurrences without exact representa-
tion in the value space of per numeric datatype in the Web Data Commons December
2020 dataset xsd:float and xsd:double (Measures 1, 2) in absolute numbers and rel-
ative to the total number of literals with the same datatype (Measure 3). The notation
of xsd:double in embedded JSON-LD was normalized during the dataset generation.

Embedded JSON-LD RDFa
Unprecise In

Datatype xsd:float xsd:double xsd:float xsd:double
xsd:decimal 0 (.00) 0 (.00) 3087 (.37) 3087 (.37)
xsd:double 69 648 087 (.68) 69 646 819 (.68) 58 (.25) 58 (.25)
xsd:float 21 750 (.24) 21 750 (.24) 339 583 (.33) 338 676 (.33)
xsd:int - - 0 (.00) 0 (.00)
xsd:integer 7 564 635 (.00) 996 (.00) 1492 (.00) 38 (.00)
xsd:long 2 (.06) 0 (.00) - -
xsd:nonNegativeInteger - - 136 (.23) 0 (.00)
xsd:positiveInteger - - 0 (.00) 0 (.00)

instead of the deprecated datatypes, if these are used in existing data. One or
several additional new datatypes with hexadecimal lexical representations should
be used for the actual representation of binary floating point values. However,
this radical solution would make a decision for existing data in favor of the
verbatim interpretation of the lexical representation. Thus, in (presumable not
occurring) cases of an intended representation of e.g. 0.100 000 001 4. . . with
"0.1"^^xsd:float, existing data would get distorted.

A more cautious mitigation of the problem should tackle the disadvantages of
xsd:decimal: It would be desirable to introduce in RDF mandatory support for
(a) an exponential notation for the decimal datatype, and (b) a decimal data-
type that supports infinite values, like precisionDecimal, to eliminate these
disadvantages. Further, binary floating point datatypes should only be used for
numeric values if (a) a representation of infinity is required, or (b) the origi-
nal source provides binary floating point values. In general, xsd:decimal must
become the first choice for the representation of numbers. Semantic Web teach-
ing materials should clearly name the disadvantages of the binary floating point
datatypes, shorthand syntaxes should in future prioritize the decimal datatype,
and Semantic Web tools should hint to use xsd:decimal.
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