
BLAST: Block Applications for Things

Michael Freund1[0000−0003−1601−9331], Thomas Wehr1[0000−0002−0678−5019], and
Andreas Harth1,2[0000−0002−0702−510X]

1 Fraunhofer Institute for Integrated Circuits IIS, Nürnberg, Germany
firstname.lastname@iis.fraunhofer.de

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany

Abstract. We introduce a block-based visual programming language
called BLAST for programs involving connected devices with a Web of
Things abstraction. We developed an editor and an execution environ-
ment for BLAST programs that runs in a web browser. We demonstrate
that BLAST can be used to create programs that interact with a vari-
ety of devices. In particular we show the use of connected devices in a
geofencing scenario.

Keywords: Block-based Programming · Web of Things · Graphical Pro-
gramming.

1 Introduction

Connected devices form the basis for a wide variety of applications in industry
settings, such as condition monitoring, energy consumption analysis, simulation
and optimisation [3]. The Web of Things (WoT)1 aims at providing a set of
standardised technologies to help simplify creating applications involving con-
nected devices. At the same time, casual users should be able to quickly program
applications involving connected devices. The programming languages currently
in use for accessing devices are primarily text-based and are difficult to access
for casual users. One possible approach to improve accessibility and ease the
creation of computer programs is the visual programming paradigm.

Visual programming does not require the user to enter any text; instead, pro-
grams are based on graphical elements like blocks, graphs, tables or diagrams.
Programs are created by arranging predefined blocks with images or text via a
drag-and-drop interface. Blocks can be geometrically aligned with other com-
patible blocks, like in a jigsaw puzzle, to form complex programs. Since blocks
can only be arranged in the correct way, no syntax errors can occur [5] [6] [10].

The block-based approach can be used not only for learning programming
concepts, but also for more complex problems. Block languages have been suc-
cessfully used in constructing SPARQL queries [2] or programming industrial
robots [9] [11], both areas which normally require advanced programming skills.

We present BLAST, a visual programming environment that works with de-
vices following the Web of Things interface. BLAST programs can be created

1 https://www.w3.org/WoT/



2 M. Freund et al.

in a web browser, based on Google’s Blockly2, a JavaScript library for creat-
ing block-based languages and editors. BLAST programs can be translated into
JavaScript and executed in the web browser. BLAST implements the Web of
Things abstraction to devices with Bluetooth Low Energy (BLE) and USB Hu-
man Interface Devices (HID) interface via APIs of modern web browsers.

The currently best known tool for programming IoT devices using visual
programming is Node-RED3. Node-RED’s programming paradigm is based on
dataflows; in contrast, BLAST focuses on control flow constructs. The use cases
in industrial settings we envision for BLAST involve mostly control flow, and in
such scenarios a dataflow abstraction can lead to programs that are difficult to
understand and maintain.

Another system similar to BLAST is Punya [8], an Android app develop-
ment system based on the MIT App Inventor4. Like BLAST, Punya offers a
block-based programming environment for writing programs that can include
SPARQL queries and access online services. Punya focuses on creating applica-
tions for Android devices that can access the mobile phone’s internal hardware.
Punya also acts as a client to publish and access data on servers supporting the
Constrained Application Protocol (CoAP). BLAST programs, on the other hand,
run in modern web browsers and support devices based on a WoT abstraction.

In the following we first introduce the BLAST language using a geofencing
scenario, next describe the browser-based editor and execution environment for
BLAST programs, followed by a short usability evaluation, and then conclude.

2 BLAST Language

When choosing the vocabulary for our block-based language BLAST, we decided
on a mixture of natural language and computer language [7]. In BLAST, the
blocks are arranged into readable sentences, as in a natural language, but the
blocks also contain a few technical programming terms, such as ”repeat while
true” instead of ”forever”.

The BLAST language includes standard elements from other programming
languages such as loops, functions, and variables. In addition, the BLAST lan-
guage provides blocks related to interacting with WoT devices. These WoT-
related blocks can be grouped under the three interaction affordances Proper-
ties (that can be read and written), Actions (that can be invoked), and Events
(that can be observed). Further, the BLAST language includes blocks to send
HTTP requests with arbitrary headers, request method and request body. The
BLAST language also includes blocks to load RDF graphs from a URI and exe-
cute SPARQL queries, which allows for the interaction with Read-Write Linked
Data APIs or other REST APIs. Finally, if the available blocks are not sufficient
to implement a desired functionality, there is a block in which native JavaScript

2 https://developers.google.com/blockly/
3 https://nodered.org/
4 https://appinventor.mit.edu/



BLAST: Block Applications for Things 3

code can be entered, and thus almost everything that is possible in JavaScript
is also possible in BLAST.

Fig. 1. Example BLAST program that implements a geofencing scenario: when the
beacon gets close, the light is turned off; when the beacon leaves the close range, a
sound is played and the light is turned red.

For an example of a BLAST program see figure 1. The program involves
a LED light with a BLE interface and a small battery-powered BLE beacon.
The BLE controller (the “BLE central”) is implicitly used when reading the
signal-strength property. The functionality of these devices (“Things”) can be
accessed via reading and writing properties. The LED light, for example, has
a property “colour” that can be written. To enable an event abstraction, the
program includes a block that defines a state with a condition on the signal
strength of the BLE beacon. On entering or exiting the defined state, the event
blocks, which itself can contain arbitrary blocks, are triggered.

3 BLAST Editor and Execution Environment

We have implemented an editor and an execution environment for BLAST pro-
grams that run in modern web browsers.

The editor uses the Blockly library and provides custom control and com-
mand blocks that make up the BLAST language. The custom blocks and the
BLAST environment follow almost all of the design principles introduced by
Fraser [4], such as a clear border style or the avoidance of transitive connections.
Not implemented, however, are the varying color choices for different loop types.

Based on the user’s arrangement of the blocks, the editor generates JavaScript
code that can then be executed in the browser. The system builds on the Web
Bluetooth API5 and the WebHID API6 to interact with devices. BLAST uses the
Web of Things abstraction as interface; we have implemented the WoT interface

5 https://webbluetoothcg.github.io/web-bluetooth/
6 https://wicg.github.io/webhid/



4 M. Freund et al.

for eight devices that use the BLE GAP and GATT profiles as well as the USB
and Bluetooth HID interface. The WoT interface contains the metadata and
interaction affordances as well as the JavaScript code needed for communication.
In addition, the system includes access to the camera and sound output via
browser APIs using the WoT interface. Further, the system includes access to
the Web Speech API7. The functionality to issue HTTP requests is based on the
Fetch API8, Social Linked Data (Solid) authentication is based on the Inrupt
client libraries9, and SPARQL query support is based on µRDF.js10. Next to the
presented small scenario around geofences, we have developed BLAST programs
to accomplish five use cases with varying complexity. These use cases include
switching on a light, temperature monitoring, and movement detection. Each
use case introduces a different challenge that requires the use of programming
patterns in combination with the built-in blocks for properties, actions, events,
requests, and queries.

4 Usability Evaluation

For evaluating the usability of BLAST, we employ the System Usability Scale
(SUS) questionnaire. According to Assila et al. [1], SUS provides reliable results
for different sample sizes and converges quickly to the correct conclusion.

We conducted an evaluation with nine participants. None of the participants
had background knowledge regarding the Web of Things, RDF, or SPARQL.
Participants were asked to solve four tasks using BLAST, these included a sim-
ple “Hello World!” program, periodic polling of RSSI data by using a loop,
reading data from a connected IoT device, and as a final task, reading data and
processing it using logical operators. After the completion of these tasks, the
participants filled out the SUS questionnaire. The achieved SUS score across all
questionnaires is 81.4 out of 100 points, which corresponds to good usability.

It must be noted that the survey was conducted with an older version of
BLAST. This is due to the fact that BLAST is under constant development.
Since the user interface has undergone only minor changes since the evaluation,
the results are still relevant.

5 Conclusion

We have introduced BLAST, a block-based language that simplifies the interac-
tion with IoT devices, digital twins or other web resources without the need for a
deeper understanding of different programming languages or network protocols.
We are currently working on an execution environment that runs on Node.js as
a way to execute BLAST programs independently of browsers, which impose
restrictions on accessing devices to provide security and privacy protection.

7 https://wicg.github.io/speech-api/
8 https://fetch.spec.whatwg.org/
9 https://docs.inrupt.com/developer-tools/javascript/client-libraries/

10 https://github.com/vcharpenay/uRDF.js/



BLAST: Block Applications for Things 5

References

1. Assila, A., Ezzedine, H., et al.: Standardized usability questionnaires: Features and
quality focus. Electronic Journal of Computer Science and Information Technology
6(1) (2016)

2. Bottoni, P., Ceriani, M.: Using blocks to get more blocks: Exploring linked data
through integration of queries and result sets in block programming. In: IEEE
Blocks and Beyond Workshop. pp. 99–101 (2015)

3. Cimino, C., Negri, E., Fumagalli, L.: Review of digital twin applications in manu-
facturing. Computers in Industry 113, 103130 (2019)

4. Fraser, N.: Ten things we’ve learned from blockly. In: 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond). pp. 49–50 (2015).
https://doi.org/10.1109/BLOCKS.2015.7369000

5. Kelleher, C., Pausch, R.: Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Com-
puting Surveys 37(2), 83–137 (2005)

6. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch pro-
gramming language and environment. ACM Transactions on Computing Education
(TOCE) 10(4), 1–15 (2010)

7. Pasternak, E., Fenichel, R., Marshall, A.N.: Tips for creating a block language with
blockly. In: IEEE Blocks and Beyond Workshop. pp. 21–24 (2017)

8. Patton, E.W., Woensel, W.V., Seneviratne, O., Loseto, G., Scioscia, F., Kagal, L.:
The punya platform: Building mobile research apps with linked data and semantic
features. In: International Semantic Web Conference. pp. 563–579. Springer (2021)

9. Tomlein, M., Grønbæk, K.: A visual programming approach based on domain on-
tologies for configuring industrial iot installations. In: Seventh International Con-
ference on the Internet of Things. pp. 1–9 (2017)

10. WEINTROP, D.: Block-based programming in computer science education. COM-
MUNICATIONS OF THE ACM 62(8), 22–25 (2019)

11. Weintrop, D., Shepherd, D.C., Francis, P., Franklin, D.: Blockly goes to work:
Block-based programming for industrial robots. In: IEEE Blocks and Beyond
Workshop. pp. 29–36 (2017)


