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Abstract. Knowledge graph embeddings and successive machine learn-
ing models represent a topic that has been gaining popularity in recent
research. These allow the use of graph-structured data for applications
that, by definition, rely on numerical feature vectors as inputs. In this
context, the transformation of knowledge graphs into sets of numerical
feature vectors is performed by embedding algorithms, which map the
elements of the graph into a low-dimensional embedding space. However,
these methods mostly assume a static knowledge graph, so subsequent
updates inevitably require a re-run of the embedding process. In this
work the Navi Approach is introduced which aims to maintain advan-
tages of established embedding methods while making them accessible to
dynamic domains. Relational Graph Convolutional Networks are adapted
for reconstructing node embeddings based solely on local neighborhoods.
Moreover, the approach is independent of the original embedding pro-
cess, as it only considers its resulting embeddings. Preliminary results
suggest that the performance of successive machine learning tasks is at
least maintained without the need of relearning the embeddings nor the
machine learning models. Often, using the reconstructed embeddings in-
stead of the original ones even leads to an increase in performance.
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1 Introduction and Motivation

Knowledge graphs (KGs) have emerged as an effective tool for managing semi-
structured domain knowledge so that it can be made available in a human-
and machine-interpretable way. Their inherent information is encoded as triples
(subject, predicate, object) and used to improve the performance in areas such
as question answering [5] and recommendation [9]. Moreover, KGs play a key
role in data-intensive domains like Industry 4.0, where they have so far mostly
been used for interconnecting technologies to improve efficiency and productivity
of existing processes [2]. In order to make the information encoded within the
knowledge graph available for machine learning models, representational learn-
ing methods are used to map its entities into a low-dimensional numerical space.
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These representations of the entities, so-called embeddings, can then be pro-
cessed by successive machine learning models. In the context of Industry 4.0,
for example, embeddings are increasingly used as inputs for domain applica-
tions. Furthermore, current developments in this field, such as the transition
to Industry 5.0, focus on human-machine collaboration, making a well-defined
communication and interaction a crucial component for promoting trust [7]. The
relevance of knowledge graphs as common specifications of a shared conceptual-
ization will therefore increase even further.
Besides that, accumulation of interconnected devices in this context, as well as
in other domains, is causing an increase in updates to KGs in the form of ad-
ditions or deletions of edges and nodes. A knowledge graph should therefore be
considered as dynamic, i.e., its topological structure or attributive information is
changing over time. However, current methods lack this kind of flexibility. Usu-
ally, static KGs are assumed whose encoded information changes little or not at
all. As soon as the graph is updated, the embeddings have to be relearned for the
whole KG in order to include the updated information. For large-scale graphs,
this relearning can be very time and resource intensive. Furthermore, retraining
usually provides structurally similar but not identical embeddings for existing
nodes, which is why successive machine learning models have to be adapted as
well. Therefore, due to the increasing dynamics and scope of prospective KGs,
these methods cannot be considered a suitable solution.
In this PhD, the Navi Approach is introduced to fill this gap towards the ap-
plication of KG embeddings in dynamic domains. State of the art embedding
algorithms for static knowledge graphs are solely used as blueprints for simplified
and local reconstructions. It is shown that in this way established embedding
methods are adapted such that dynamics are enabled as well.

2 State of the Art

Static Knowledge Graph Embeddings. In order to be able to use con-
textual information from a knowledge graph, embedding methods are usually
considered, which assign numerical feature vectors to the nodes based on the
topology of the graph. In this context, Relational Graph Convolutional Net-
works (R-GCNs) [15] accumulate the feature vectors of neighboring nodes based
on the local structure of a KG. However, R-GCNs are inevitably customized
to a specific use case and usually not all nodes in the graph are assigned an
embedding. In contrast, RDF2Vec [11] generates all-embracing embeddings for
different data mining tasks [20]. However, as a transductive method, the em-
beddings must always be relearned when the graph is updated. ConvE [4], as
being another neural network based approach, uses two-dimensional embeddings
as input, as well as convolutional layers and fully connected layers to reduce the
number of parameters. It has been shown that extensions of TransE [3] are capa-
ble of embedding symmetric, asymmetric, inverse and compositional relations,
though the basic idea of using a translation-based scoring function is preserved
in all of them [16]. In contrast, compositional models apply tensor factorizations
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to compute the embeddings [8, 23] and extensions to the compositional models
employ complex numbers to be able to model binary relations [19]. Moreover,
embedding methods exist which also take literals into account [13]. However, the
embedding methods mentioned so far are trained for an entire static knowledge
graph at once. Thus, possible dynamics of a graph in the form of additions and
deletions of edges are not considered, which often impairs their use in practice.
Dynamic Knowledge Graph Embeddings. As an adaptation of the static
embedding method TransE, puTransE [17] allows parallelization and orchestra-
tion across multiple machines and is thus capable of handling the dynamics in
KGs. Another of the few approaches to dynamic embeddings is represented by
DKGE [22], which is also based on TransE. Here, dynamics are enabled by re-
stricting the retraining of the embeddings to the context of updated nodes, i.e.,
their neighboring nodes. Thus, the integration of new information is accelerated
compared to full relearning. In the area of dynamic graphs in general, meth-
ods employ deep recurrent architectures [18], as well as self-attention layers [14]
which encode temporally evolving structural information. However, none of the
existing approaches is general enough to handle arbitrary embedding methods.
In addition, updates in the graph necessarily require a relearning of embeddings,
even if only for subgraphs, which in turn affects the overall structure of the em-
beddings and therefore also successive machine learning applications.

3 Problem Statement and Contributions

Based on the motivation and the state of the art in learning representations for
knowledge graphs, there is a gap that we intend to fill in this PhD. We plan to
provide a method that reuses existing embeddings, even if they assume static
knowledge graphs, to make them usable for dynamic knowledge graphs as well.
Thus, we formulate the following hypothesis with the related research questions.

Hypothesis. Static embeddings for a knowledge graph G can serve as input
of a generalized and simplified method that incorporates the neighborhood of
a node in order to derive its corresponding embedding independently of itself,
thus enabling the generation of dynamic embeddings.

RQ1. Can static embedding methods be adapted to obtain dynamic embed-
dings for new or updated nodes without relearning the original model?

RQ2. What impact do knowledge graph updates, such as the addition of
entities and removal of edges, have on the performance of generated
embeddings with respect to entity classification and link prediction?

With this hypothesis and the related research questions, we intend to contribute
to the Semantic Web community by developing a generalized method that lever-
ages any numerical embedding by reconstructing it based on local neighborhoods
to provide simplified ad-hoc embeddings for dynamic KGs. To the best of our
knowledge, such an approach does not exist yet and will have a high impact on
the Semantic Web community, as well as in dynamic domains like Industry 4.0.
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The first research question RQ1 aims at elaborating methods for the desired
dynamic embeddings based on static embedding algorithms. We propose to jus-
tify the restriction to local reconstructions within our approach via the so-called
message passing paradigm, which states that existing embeddings are derivable
from edges to neighboring nodes and their embeddings. It is to be examined
whether this paradigm may be assumed for arbitrary embeddings, i.e., whether
local topologies are always of relevance for embedding generations.
In RQ2, we further investigate the performance of our reconstruction approach
on machine learning tasks with respect to different modifications of the KG. We
will also study the performance of dynamic embeddings regarding the amount of
modification to a KG. Furthermore, assuming the message passing paradigm, we
need to investigate the impact of embedding reconstructions on further nodes,
i.e., whether existing embeddings need to be adapted as well.

4 Research Methodology and Approach

The research of this PhD aims to define a generalized approach to the dynamiza-
tion and simplification of static embeddings ϵ : V 7→ Rd with respect to a KG
G = (V,E) which consists of the sets of nodes V and edges E ⊆ V ×R×V , where
R denotes the set of valid entity relations. Thus, analogous to existing embed-
dings, no further information such as temporal edge properties are considered.
The presented approach attempts to reconstruct the embedding ϵ(s) of a node
s ∈ V independently of ϵ(s) itself. Rather, it derives ϵ(s) from the neighborhood
multiset N(s) with elements from V \{s} such that distinct edges with adjacent
nodes are taken into account as well. Due to the independence of the recon-
struction and ϵ(s), self-loops are ignored but can be applied consecutively. The
reconstructions Φ(s) ≈ ϵ(s) proposed in this paper are always structured as a
composition Φ(s) = ϕ(s)+δ∗ϕ(s) of a deterministic ground assumption ϕ(s) ∈ Rd

and a trainable refinement term δ∗ϕ(s) ∈ Rd. By defining δϕ(s) := ϵ(s)− ϕ(s) as
the noise term, the reconstruction error to be minimized is determined as

ϵ(s)− Φ(s) = ϕ(s) + δϕ(s)−
[
ϕ(s) + δ∗ϕ(s)

]
= δϕ(s)− δ∗ϕ(s).

By inserting this error into a suitable loss function L : Rd → R+
0 and ap-

plying a backpropagation method such as Adam [6], the reconstructed em-
bedding Φ(s) is approximated to the target ϵ(s). In the following, analogous
to [15], for each relation r ∈ R an inverse relation r′ is assumed, such that
each edge (s, r, o) ∈ E implies an inverse edge (o, r′, s) to simulate the vary-
ing influence of relations on subject and object nodes. Without loss of gen-
erality, the relations R̂ =

⋃
r∈R {r, r′} are assumed in the following. Further-

more, Nr(s) =
{
v ∈ V

∣∣∃e ∈ E : e = (v, r, s)
}
is defined as the set of all parent

nodes of s ∈ V with respect to r ∈ R̂. This implies the neighborhood multiset
N(s) =

⋃
r∈R̂ Nr(s), consisting of all parent and child nodes of s. As of now, re-

construction mappings Φ(·) based on N(s) are also referred to as Navi Layers,
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like the Connectivity Navi Layer ΦC(·), defined by

ϵ(s) ≈ ΦC(s) =
1

|N(s)|

(∑
r∈R̂

∑
y∈Nr(s)

[
Wr + Id

]
· ϵ(y) + br

)
(1)

with weight matrices Wr ∈ Rd×d and bias terms br ∈ Rd for all relations r ∈ R̂.
With respect to the parameter initializations Wr = 0 and br = 0, the ground
assumption ϕC(s) = 1

|N(s)|
∑

y∈N(s) ϵ(y) thus follows that the centroid of the

neighbor embeddings should be close to the destined embedding ϵ(s). Finally,
the refinement is achieved by training the weight matrices Wr and biases br in

δϕ∗
C
(s) = 1

|N(s)|

(∑
r∈R̂

∑
y∈Nr(s)

Wr · ϵ(y) + br)
)

for all relations r ∈ R̂ such that the loss L
(
ϵ (s) − ΦC (s)

)
is minimized. In

particular, this approach resembles the idea of RDF2Vec embeddings, since the
ground assumption does not include any information about the specific relations
and considers connectedness as a cause of similarity. In contrast, the Transla-
tional Navi Layer ΦT (·) takes these relations into account by adapting trans-
lational approaches like TransE. These embed triples (s, r, o) ∈ E such that
ϵ(o) ≈ ϵ(s) + h(r) holds, where h(r) ∈ Rd is the embedding of relation r. By
introducing the set Er := {(·, r, ·) ∈ E} and the deterministic approximations
hr := 1

|Er|
∑

(s,r,o)∈Er
[ϵ(o)− ϵ(s)] ≈ h(r), the Navi Layer ΦT (·) is defined by

ϵ(s) ≈ ΦT (s) =
1

|N(s)|

(∑
r∈R̂

∑
y∈Nr(s)

[
Wr + Id

]
·
[
ϵ(y) + hr

]
+ br

)
, (2)

where the ground assumption and the refinement are defined analogously to
ΦC(·), considering the transformations ϵ(y) 7→ ϵ(y) + hr.
The Navi Layers ΦC(·) and ΦT (·) can be interpreted as special cases of R-GCN
layers according to [15] with the corresponding forward pass from layer l to l+1

h(l+1)
s = σ

([
W

(l)
0 · h(l)

s + b
(l)
0

]
+

∑
r∈R̂

∑
y∈Nr(s)

[
1

cs,r
W

(l)
r · h(l)

y + b
(l)
r

])
.

By specifying h
(l+1)
s := ϵ(s) and h

(l)
y := ϵ(y) or h

(l)
y := ϵ(y) + hr with respect to

the corresponding relation r, one obtains equations similar to (1) and (2). The

required independence of h
(l+1)
s and h

(l)
s is preserved by defining W

(l)
0 and b

(l)
0

as deterministic zero elements. Finally, setting the activation function σ as the
identity function and the normalization term cs,r := |N(s)| independent of rela-
tion r yields the forward passes of the Navi Layers ΦC(·) and ΦT (·), respectively.
In addition, composite reconstructions of multiple Navi Layers are enabled via
so-called Navi Mergers. These are defined as mappings γ : Rd×n → Rd, where
n is the number of Navis Layers. A possible Navi Merger is the weighted mean

γ(wm) (Φ1(s), ..., Φn(s)) =: γ(wm)
n (s) = 1

n

∑n
i=1 Wi · Φi(s) + bi,

with the trainable weight matrices Wi ∈ Rd×d and biases bi ∈ Rd. In the follow-
ing we denote a Navi Approach/Reconstruction γ (·) := γ (Φ1 (·) , ..., Φn (·))
as a combination of n ∈ N Navi Layers Φ1, ..., Φn and a Navi Merger γ. The
associated training is performed as an end-to-end procedure and the set of re-
constructed embeddings for a KG G = (V,E) is denoted as Γ = {γ(v) : v ∈ V }.
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5 Evaluation Plan

The evaluation of the Navi Approach is supposed to clarify whether and to
what extent it answers the research questions RQ1 and RQ2 from Section 3. To
assess the dynamics of Navi Reconstructions Γ , common benchmark methods
like link prediction and entity classification are used. The latter is explained in
the following as an example for the evaluation procedure depicted in Figure 1.
However, the setting can be used almost analogously for link predictions, which
take into account the deletion and addition of edges.

Fig. 1. Architecture of the Navi Reconstruction approach including the evaluation
setup for simulating dynamic knowledge graphs.

The knowledge graphs AIFB, MUTAG, BGS and AM from [12] are particularly
suitable as evaluation data as they each contain labeled nodes Θ ⊂ V including
a split into train and test nodes Θtrain, Θtest ⊂ Θ. The dynamics of a KG G
are then simulated via the temporal transition from Gt−1 with an embedding
Et−1 at time t − 1 towards Gt at time t by removing the test nodes in Gt−1.
The reconstructed embeddings of Gt based on Gt−1 and Et−1 are denoted as

Γ
(t−1)
t = {γ(t−1)

n (v) : v ∈ Vt}. Subsequently, three different performances p are
determined as accuracies of successive classifiers.

1. psota: The state of the art (sota) approach for integrating the new nodes Θtest

is to retrain an embedding Et for the KG Gt. The classifier is retrained on
these embeddings {ϵt(v) : v ∈ Θtrain} and evaluated for {ϵt(v) : v ∈ Θtest}.

2. paddnavi: A Navi Approach γ
(t−1)
n is trained on Et−1 and Gt−1. The classifier is

trained on {ϵt−1(v) : v ∈ Θtrain} and evaluated for {γ(t−1)
n (v) : v ∈ Θtest}.

3. pfullnavi: The same Navi Approach γ
(t−1)
n is assumed as for paddnavi. However, the

classifier is trained on the reconstructions {γ(t−1)
n (v) : v ∈ Θtrain} as well.
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For the evaluation, it is of relevance whether the performance paddnavi maintains a
similar level as psota despite reusing the classifier and not retraining the static
embedding model. This comparison is also needed for link predictions, although
other metrics as performances must be considered in this case [19]. On the other
hand, pfullnavi evaluates a novel and dynamic embedding method by reconstructing
the full graph and training a new classifier based on these reconstructions.

6 Preliminary Results

The preliminary results are initially limited to the AIFB KG and the entity clas-
sification task for a Support Vector Machine with RBF kernel and regularization
C = 1. As static embedding methods, RDF2Vec [11], TransE [3], TransD [10],
CrossE [24], RotatE [16], ConvE [4], RESCAL [8] and DistMult [23] are con-
sidered. The RDF2Vec embeddings were generated with pyrdf2vec [21] and the
remaining embeddings via pykeen [1] with the default settings. Navi Reconstruc-
tions of these embeddings are always achieved via γ(·) := γ(wm) (ΦC(·), ΦT (·))
with the Navi Merger γ(wm) and the Navi Layers ΦC , ΦT from Section 4. The
training runs are performed using Adam, a learning rate of 0.001, dropout 0.5,
the epochs {0, 100, 500} and the following modified mean squared error (MSE)

L
(
γ(x), ϵ(x)

)
= 1

d

∑d
j=1

{∣∣∣ exp(min(γ(x)j ,ϵ(x)j))
exp(max(γ(x)j ,ϵ(x)j))

− 1
∣∣∣+ [

γ(x)j − ϵ(x)j
]2}

.

The exponential summand takes into account that, due to the squaring, abso-
lutely small entries are mostly neglected by the standard MSE.

Table 1. Evaluation of the entity classification task. The 3-tuples (psota, p
add
navi, p

full
navi)

represent the evaluation performances (here classification accuracies in percent). For
RESCAL with the epoch number 1000 the performances (53, 53, 67) were obtained.

Epochs RDF2Vec TransE TransD CrossE RotatE ConvE RESCAL DistMult

0 83, 89, 92 83, 72, 89 83, 86, 92 69, 44, 86 89, 56, 89 78, 42, 89 53, 31, 58 92, 47, 89
100 83, 86, 92 83, 89, 89 83, 86, 86 69, 53, 86 89, 86, 89 78, 83, 89 53, 33, 58 92, 83, 86
500 83, 89, 92 83, 89, 89 83, 86, 92 69, 81, 86 89, 89, 89 78, 86, 89 53, 47, 67 92, 92, 92

The results from Table 1 suggest that, at least in the present setting, the research
questions RQ1 and RQ2 could be solved by the Navi Approach. Sufficiently large
epoch numbers apparently lead to paddnavi ≥ psota, which exceeds the minimum goal
of approximately maintaining the state of the art performance psota without the
need of relearning the embedding model after each update to the graph. Further,
the performances pfullnavi suggest some sort of regularization of the data. Without
a single training run, the use of Navi Reconstructions mostly yields better per-
formances and simultaneously allows the desired dynamics in the KG. The still
ongoing evaluation of the Navi Reconstructions implies that these results and
observations also apply to the knowledge graphs MUTAG, BGS and AM.
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7 Conclusions and Lessons Learned

In this paper, we presented the Navi Approach as a possible enabler of simplified
and dynamic knowledge graph embeddings. It is gratifying and not to be taken
for granted that these promising results are already available at such an early
stage of this PhD, justifying further research in this direction. Thus, an extension
of the evaluation to large-scale graphs like DBpedia, Wikidata and YAGO is
planned already. In the process, further forms of dynamics are to be highlighted
and tested. Based on this, we will investigate whether and to what extent the
Navi Approach already provides an answer to the research questions RQ1 and
RQ2. This phase of research will also clarify whether, as conjectured in Section 6,
a form of regularization actually occurs when existing embeddings are replaced
by their reconstructions. Furthermore, there is the possibility to use the Navi
Approach as a simplified surrogate model of static embedding methods and thus
try to improve the interpretability of KG embeddings in future work as well.
In summary, this PhD’s research will contribute to the ability to process dynamic
knowledge graphs, making them accessible to humans as well as machines as a
basis for their communication. This result would represent a fundamental step
towards current research fields like Industry 5.0 and at the same time have a
major impact on all areas involving dynamic knowledge graphs.

Acknowledgements. This PhD is part of the TEAMING.AI project which re-
ceives funding in the European Commission’s Horizon 2020 Research Programme
under Grant Agreement Number 957402 (www.teamingai-project.eu). Further-
more, I would like to thank my supervisor Prof. Dr. Heiko Paulheim and my
co-supervisor Dr. Tobias Weller for their continuous support.

References

1. Ali, M., Berrendorf, M., et al.: Pykeen: A Python Library for Training and Eval-
uating Knowledge Graph Embeddings. Journal of Machine Learning Research 22
(2021)

2. Bader, S.R., Grangel-Gonzalez, I., et al.: A knowledge graph for industry 4.0. In:
The Semantic Web (2020)

3. Bordes, A., Usunier, N., et al.: Translating embeddings for modeling multi-
relational data. In: Advances in Neural Information Processing Systems. vol. 26.
Curran Associates, Inc. (2013)

4. Dettmers, T., Pasquale, M., et al.: Convolutional 2d knowledge graph embeddings.
In: Proceedings of the 32th AAAI Conference on Artificial Intelligence (2018)
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